论文标题

PPYTHON用于平行Python编程

pPython for Parallel Python Programming

论文作者

Byun, Chansup, Arcand, William, Bestor, David, Bergeron, Bill, Gadepally, Vijay, Houle, Michael, Hubbell, Matthew, Jananthan, Hayden, Jones, Michael, Keville, Kurt, Klein, Anna, Michaleas, Peter, Milechin, Lauren, Morales, Guillermo, Mullen, Julie, Prout, Andrew, Reuther, Albert, Rosa, Antonio, Samsi, Siddharth, Yee, Charles, Kepner, Jeremy

论文摘要

Ppython试图提供一种并行能力,可以通过在简单的基于文件的消息传递库(Pythonmpi)上实现分区的全局阵列语义(PGA)来提供良好的加速度,而无需在Python中牺牲Python的编程易于性。 PPYTHON中的核心数据结构是一个分布式数值阵列,其在多个处理器上的分布用MAP构造指定。分布式阵列之间的通信操作从用户中抽象出来,Ppython透明地支持最多四个维度的任何块环循环分布之间的重新分布。 Ppython遵循SPMD(单个程序多个数据)计算模型。 PPYTHON在支持Python(包括Windows,Linux和MacOS操作系统)的异质系统的任何组合上运行。除了在单节点上透明运行(例如,笔记本电脑),Ppython还提供了调度程序接口,以便可以在大量并行的计算环境中执行PPYTHON。初始实现使用SLURM调度程序。 PPYTHON在HPC挑战基准套件上的性能既表现出易于编程和可扩展性。

pPython seeks to provide a parallel capability that provides good speed-up without sacrificing the ease of programming in Python by implementing partitioned global array semantics (PGAS) on top of a simple file-based messaging library (PythonMPI) in pure Python. The core data structure in pPython is a distributed numerical array whose distribution onto multiple processors is specified with a map construct. Communication operations between distributed arrays are abstracted away from the user and pPython transparently supports redistribution between any block-cyclic-overlapped distributions in up to four dimensions. pPython follows a SPMD (single program multiple data) model of computation. pPython runs on any combination of heterogeneous systems that support Python, including Windows, Linux, and MacOS operating systems. In addition to running transparently on single-node (e.g., a laptop), pPython provides a scheduler interface, so that pPython can be executed in a massively parallel computing environment. The initial implementation uses the Slurm scheduler. Performance of pPython on the HPC Challenge benchmark suite demonstrates both ease of programming and scalability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源