论文标题
通过楔形产品和几何形状分类和定量纠缠
Classification and Quantification of Entanglement Through Wedge Product and Geometry
论文作者
论文摘要
测量后向量的楔形产物已显示出平行四边形的“区域”度量,已证明可以给出一般的I纠缠量度。将楔形产品形式主义扩展到多QUDIT系统,我们提出了一种修改的忠实纠缠措施,并结合了较高的维数和由后测量载体形成的并行任面元素的面积元素。该度量细度将纠缠单调粒子,其中不同的纠缠类别以不同的几何形状表现出来。考虑到所有可能的几何结构,我们已经对二分Qutrit案例进行了完整的分析。可以用不同的测量后载体几何形状来识别三个纠缠类别,即三个平面向量,三个相互正交的向量,三个既不是平面,也不是所有的矢量是相互正交的。进一步证明,面积和体积最大化的几何条件自然导致纠缠的最大化。楔形产品方法揭示了纠缠的固有几何形状,并且被发现对于在较高维系统中的表征和量化纠缠非常有用。
Wedge product of post-measurement vectors leading to an `area' measure of the parallelogram has been shown to give the generalized I-concurrence measure of entanglement. Extending the wedge product formalism to multi qudit systems, we have presented a modified faithful entanglement measure, incorporating the higher dimensional volume and the area elements of the parallelepiped formed by the post-measurement vectors. The measure fine grains the entanglement monotone, wherein different entangled classes manifest with different geometries. We have presented a complete analysis for the bipartite qutrit case considering all possible geometric structures. Three entanglement classes can be identified with different geometries of post-measurement vectors, namely three planar vectors, three mutually orthogonal vectors, and three vectors that are neither planar and not all of them are mutually orthogonal. It is further demonstrated that the geometric condition of area and volume maximization naturally leads to the maximization of entanglement. The wedge product approach uncovers an inherent geometry of entanglement and is found to be very useful for characterization and quantification of entanglement in higher dimensional systems.