论文标题

最佳对角线预处理

Optimal Diagonal Preconditioning

论文作者

Qu, Zhaonan, Gao, Wenzhi, Hinder, Oliver, Ye, Yinyu, Zhou, Zhengyuan

论文摘要

长期以来,预处理一直是优化的主食技术,通常用于减少矩阵的条件数并加快算法的收敛性。尽管实践中有许多流行的预处理技术,但大多数人缺乏降低条件数量的保证。此外,我们可以改善现有的启发式预处理的程度仍然是一个重要的实际问题。在本文中,我们研究了最佳的对角线预处理问题,该问题通过缩放行和/或列来实现任何全级矩阵的条件数量最大的减少。我们首先将问题重新将问题重新制定为一个准凸问题,并基于分分为基础提供了一种简单的算法。然后,我们使用$ o(\ log(1/ε))$迭代复杂性开发一种内点算法,其中每个迭代都由基于Nesterov-TODD方向的牛顿更新组成。接下来,我们专注于单方面的最佳对角线预处理问题,并证明它们可以作为标准双SDP问题配制。然后,我们通过大型矩阵上的大量实验来开发有效的定制求解器,并研究我们最佳对角线预处理程序的经验性能。我们的发现表明,最佳的对角线预处理可以在减少疾病数量并加快迭代方法的情况下对现有的基于启发式的对角线预处理显着改善。此外,我们对定制求解器的实施,结合一个随机的行/列采样步骤,可以在合理时间内找到近距离的矩阵,矩阵的近对角线预处理,以表明其实际吸引力。

Preconditioning has long been a staple technique in optimization, often applied to reduce the condition number of a matrix and speed up the convergence of algorithms. Although there are many popular preconditioning techniques in practice, most lack guarantees on reductions in condition number. Moreover, the degree to which we can improve over existing heuristic preconditioners remains an important practical question. In this paper, we study the problem of optimal diagonal preconditioning that achieves maximal reduction in the condition number of any full-rank matrix by scaling its rows and/or columns. We first reformulate the problem as a quasi-convex problem and provide a simple algorithm based on bisection. Then we develop an interior point algorithm with $O(\log(1/ε))$ iteration complexity, where each iteration consists of a Newton update based on the Nesterov-Todd direction. Next, we specialize to one-sided optimal diagonal preconditioning problems, and demonstrate that they can be formulated as standard dual SDP problems. We then develop efficient customized solvers and study the empirical performance of our optimal diagonal preconditioning procedures through extensive experiments on large matrices. Our findings suggest that optimal diagonal preconditioners can significantly improve upon existing heuristics-based diagonal preconditioners at reducing condition numbers and speeding up iterative methods. Moreover, our implementation of customized solvers, combined with a random row/column sampling step, can find near-optimal diagonal preconditioners for matrices up to size 200,000 in reasonable time, demonstrating their practical appeal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源