论文标题
在Kelt-9 B大气中检测Paschen $β$吸收:超热木星大气的新窗口
Detection of Paschen $β$ absorption in the atmosphere of KELT-9 b: A new window into the atmospheres of ultra-hot Jupiters
论文作者
论文摘要
氢和氦传输信号追踪热气巨气外行星的上层大气,在该大气中,即将到来的恒星极端紫外线和X射线通量被沉积。此外,对于最热的恒星,Balmer连续体中氢气的近粉状兴奋可能在控制大气温度和驱动光蒸发方面起主要作用。 KELT-9 B是这种环境的原型示例,因为它是迄今为止已知的最热的天然气巨型系外行星(T $ _ {eq} $ $ \ sim $ 4500 K),并且Orbits A0V-Type star Orbits。对这种超热木星的高层大气和逃避气体的研究针对Balmer系列氢的吸收(n $ _1 $ = 2 $ \ rightarrow $ n $ n $ _2 $ $> $ 2)。不幸的是,在108.3 nm处引起三重态吸收的最低亚稳态氦状态不足以检测。在这里,我们提供了在用卡门氏菌观察到的Kelt-9 B传输光谱中帕申系列中吸收氢的证据。具体而言,我们专注于其NIR频道所涵盖的最强线,Paschen- $β$在1282.16 nm(n $ _1 $ = 3 $ \ rightarrow $ n $ _2 $ = 5)。观察到的吸收显示(0.53 $^{+0.12} _ { - 0.13} $)%,BlueShift的$ - $ 14.8 $^{+3.5} _ { - 3.2} $ km/s,fwhm of 31.9 $^$^{+11.8} $ km/s,s+11.8} _ 31.3 $ 3.3 $ km}吸收特征中观察到的蓝光可以通过重力结合的大气中的日夜循环来解释,或者,通过极端大气蒸发,源自逃避气体向观察者移动的尾巴的paschen-$β$吸收。该检测为研究超热木星的大气开辟了一个新窗口,为其温度结构,质量损失率和动力学提供了其他限制,以使其闻闻大气的未来建模。
Hydrogen and helium transmission signals trace the upper atmospheres of hot gas-giant exoplanets, where the incoming stellar extreme ultraviolet and X-ray fluxes are deposited. Further, for the hottest stars, the near-ultraviolet excitation of hydrogen in the Balmer continuum may play a dominant role in controlling the atmospheric temperature and driving photoevaporation. KELT-9 b is the archetypal example of such an environment as it is the hottest gas-giant exoplanet known to date (T$_{eq}$ $\sim$ 4500 K) and orbits an A0V-type star. Studies of the upper atmosphere and escaping gas of this ultra-hot Jupiter have targeted the absorption in the Balmer series of hydrogen (n$_1$ = 2 $\rightarrow$ n$_2$ $>$ 2). Unfortunately, the lowermost metastable helium state that causes the triplet absorption at 108.3 nm is not sufficiently populated for detection. Here, we present evidence of hydrogen absorption in the Paschen series in the transmission spectrum of KELT-9 b observed with CARMENES. Specifically, we focus on the strongest line covered by its NIR channel, Paschen-$β$ at 1282.16 nm (n$_1$ = 3 $\rightarrow$ n$_2$ = 5). The observed absorption shows a contrast of (0.53 $^{+0.12}_{-0.13}$)%, a blueshift of $-$14.8 $^{+3.5}_{-3.2}$ km/s, and a FWHM of 31.9$^{+11.8}_{-8.3}$ km/s. The observed blueshift in the absorption feature could be explained by day-to-night circulation within the gravitationally bound atmosphere or, alternatively, by Paschen-$β$ absorption originating in a tail of escaping gas moving toward the observer as a result of extreme atmospheric evaporation. This detection opens a new window for investigating the atmospheres of ultra-hot Jupiters, providing additional constraints of their temperature structure, mass-loss rates, and dynamics for future modeling of their scorching atmospheres.