论文标题

使用分类器的集合有效预测自闭症谱系障碍

On Effectively Predicting Autism Spectrum Disorder Using an Ensemble of Classifiers

论文作者

Twala, Bhekisipho, Molloy, Eamon

论文摘要

分类器的合奏结合了几个单个分类器,以提供最终的预测或分类决策。一个越来越令人发指的问题是,此类系统是否可以胜过单个最佳分类器。如果是这样,哪种形式的分类器(也称为多个分类器学习系统或多个分类器)在合奏本身的规模或多样性中产生最重要的好处?鉴于用于检测自闭症特征的测试是耗时且昂贵的,因此开发了一种将提供自闭症谱系障碍(ASD)的最佳结果和测量的系统。在本文中,评估了几个单一和后来的多个分类器学习系统,以预测和确定影响或为ASD造成ASD的因素而出于早期筛查目的的能力。该任务的行为数据和机器人增强疗法的3,000次课程和300小时的数据集用于此任务。仿真结果表明,与单个分类器相比,多个分类器学习系统(尤其是每个集合分类器三个分类器的系统)的优越性预测性能,可以通过装袋和增强获得出色的结果。看来,社会交流手势仍然是儿童ASD问题的关键因素。

An ensemble of classifiers combines several single classifiers to deliver a final prediction or classification decision. An increasingly provoking question is whether such systems can outperform the single best classifier. If so, what form of an ensemble of classifiers (also known as multiple classifier learning systems or multiple classifiers) yields the most significant benefits in the size or diversity of the ensemble itself? Given that the tests used to detect autism traits are time-consuming and costly, developing a system that will provide the best outcome and measurement of autism spectrum disorder (ASD) has never been critical. In this paper, several single and later multiple classifiers learning systems are evaluated in terms of their ability to predict and identify factors that influence or contribute to ASD for early screening purposes. A dataset of behavioural data and robot-enhanced therapy of 3,000 sessions and 300 hours, recorded from 61 children are utilised for this task. Simulation results show the superior predictive performance of multiple classifier learning systems (especially those with three classifiers per ensemble) compared to individual classifiers, with bagging and boosting achieving excellent results. It also appears that social communication gestures remain the critical contributing factor to the ASD problem among children.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源