论文标题
莫伊尔格子的轻子弹
Light bullets in moiré lattices
论文作者
论文摘要
我们预测,在具有Kerr非线性的培养基中,由两个互动的周期性转子产生的光子Moiré晶格可以支持稳定的三维轻子弹,并在时空和时间上都定位。轻子弹的稳定性及其特性与Moiré晶格的线性空间特征模式的特性密切相关,该特性在形成Moirélattice的Sublattices之一的深度时,经历了本地化 - 局部化过渡(LDT),但仅用于扭曲角度,但仅与扭曲角度相对应与不良的Moirémoiréstrounea peroiréstrouneaperiiréstroucesoluce oderi odire soluce od odire odire odire odire odire odire direcipire i.在LDT阈值上面,这种不相称的Moiré晶格支持稳定的轻子弹,而没有能量阈值。相比之下,在毕达哥拉斯扭转角出现的相称或周期性的莫伊尔晶格(其本征型被脱位的bloch波)只能支撑高于某些能量阈值的稳定的灯子弹。 LDT阈值以下的Moiré晶格不能为我们的参数支持稳定的轻弹。我们的结果表明,基础晶格的周期性/周期性是确定非线性三维状态稳定性特性的关键因素。
We predict that photonic moiré lattices produced by two mutually twisted periodic sublattices in the medium with Kerr nonlinearity can support stable three-dimensional light bullets localized in both space and time. Stability of light bullets and their properties are tightly connected with the properties of linear spatial eigenmodes of moiré lattice that undergo localization-delocalization transition (LDT) upon increase of the depth of one of the sublattices forming moiré lattice, but only for twist angles corresponding to incommensurate, aperiodic moiré structures. Above LDT threshold such incommensurate moiré lattices support stable light bullets without energy threshold. In contrast, commensurate, or periodic, moiré lattices arising at Pythagorean twist angles, whose eigenmodes are delocalized Bloch waves, can support stable light bullets only above certain energy threshold. Moiré lattices below LDT threshold cannot support stable light bullets for our parameters. Our results illustrate that periodicity/aperiodicity of the underlying lattice is a crucial factor determining stability properties of the nonlinear three-dimensional states.