论文标题
基于物理学的数字双胞胎,用于自动热食品处理:高效,无侵入式的降级建模
Physics-based Digital Twins for Autonomous Thermal Food Processing: Efficient, Non-intrusive Reduced-order Modeling
论文作者
论文摘要
使热处理可控的一种可能的方法是收集有关产品当前状态的实时信息。通常,感觉设备无法轻松或根本捕获所有相关信息。数字双胞胎在实时模拟中使用虚拟探针缩小了这一差距,并与该过程同步。本文提出了一个基于物理的,数据驱动的数字双框架,用于自动食品处理。我们建议使用设备级别可执行的精益数字双胞胎概念,需要最小的计算负载,数据存储和传感器数据要求。这项研究着重于热过程的非侵入性降低模型(ROMS)的简约实验设计。在训练数据中表面温度的高标准偏差与ROM测试中的均方根误差之间的高标准偏差之间的相关性($ r = -0.76 $)可以有效地选择训练数据。最佳ROM的平均均方根误差小于代表性测试集的1 kelvin(平均平均百分比误差为0.2%)。 SP $ \ $ 1.8E4的仿真速度允许在设备模型预测控制中。 拟议的数字双框架旨在适用于行业。通常,一旦在没有提供对求解器的根级访问(例如商业仿真软件)的软件中执行该过程的建模,就需要一旦在软件中执行该过程的建模,就需要进行非侵入的还原建模。仅使用一个数据集就可以实现减少阶模型的数据驱动训练,因为相关性可用于预测训练成功。
One possible way of making thermal processing controllable is to gather real-time information on the product's current state. Often, sensory equipment cannot capture all relevant information easily or at all. Digital Twins close this gap with virtual probes in real-time simulations, synchronized with the process. This paper proposes a physics-based, data-driven Digital Twin framework for autonomous food processing. We suggest a lean Digital Twin concept that is executable at the device level, entailing minimal computational load, data storage, and sensor data requirements. This study focuses on a parsimonious experimental design for training non-intrusive reduced-order models (ROMs) of a thermal process. A correlation ($R=-0.76$) between a high standard deviation of the surface temperatures in the training data and a low root mean square error in ROM testing enables efficient selection of training data. The mean test root mean square error of the best ROM is less than 1 Kelvin (0.2 % mean average percentage error) on representative test sets. Simulation speed-ups of Sp $\approx$ 1.8E4 allow on-device model predictive control. The proposed Digital Twin framework is designed to be applicable within the industry. Typically, non-intrusive reduced-order modeling is required as soon as the modeling of the process is performed in software, where root-level access to the solver is not provided, such as commercial simulation software. The data-driven training of the reduced-order model is achieved with only one data set, as correlations are utilized to predict the training success a priori.