论文标题

Minecraft建筑生成的开放式进化

Open-Ended Evolution for Minecraft Building Generation

论文作者

Barthet, Matthew, Liapis, Antonios, Yannakakis, Georgios N.

论文摘要

本文提出了一种程序性内容发生器,该发生器根据新颖性的开放式和内在的定义来发展Minecraft建筑物。为了实现这一目标,我们使用3D自动编码器评估了个人在潜在空间中的新颖性,并在探索和转换阶段之间进行了交替。在探索过程中,系统通过CPPN - 纳特且在潜在空间中的新颖性搜索(由当前自动编码器定义)进化了CPPN的多个种群。我们应用一组维修和约束功能,以确保候选人在进化过程中遵守基本的结构规则和约束。在转换过程中,我们通过使用新颖的内容来重新验证自动编码器,重塑潜在空间的边界,以识别解决方案空间的新有趣区域。在这项研究中,我们评估了在转型过程中训练自动编码器的五种不同方法及其对人群进化过程中质量和多样性的影响。我们的结果表明,与静态模型相比,通过重新训练自动编码器,我们可以实现更好的开放式复杂性,在使用具有多种复杂性的个体的较大数据集进行重新训练时,该模型可以进一步改进。

This paper proposes a procedural content generator which evolves Minecraft buildings according to an open-ended and intrinsic definition of novelty. To realize this goal we evaluate individuals' novelty in the latent space using a 3D autoencoder, and alternate between phases of exploration and transformation. During exploration the system evolves multiple populations of CPPNs through CPPN-NEAT and constrained novelty search in the latent space (defined by the current autoencoder). We apply a set of repair and constraint functions to ensure candidates adhere to basic structural rules and constraints during evolution. During transformation, we reshape the boundaries of the latent space to identify new interesting areas of the solution space by retraining the autoencoder with novel content. In this study we evaluate five different approaches for training the autoencoder during transformation and its impact on populations' quality and diversity during evolution. Our results show that by retraining the autoencoder we can achieve better open-ended complexity compared to a static model, which is further improved when retraining using larger datasets of individuals with diverse complexities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源