论文标题
Speiser类中逃脱的Meromorormormormorthic函数集的Hausdorff尺寸
The Hausdorff dimension of escaping sets of meromorphic functions in the Speiser class
论文作者
论文摘要
Bergweiler和Kotus在Eremenko-Lyubich类中逃脱的Meromorormormormormormormormormormormormormormormormormormormormormormorthic class的Hausdorff尺寸给出了尖锐的上边界,就函数的顺序和极度的多重性而言。我们表明,这些界限在Speiser类中也很敏锐。我们还将这种方法应用于在Speiser类中构建Meromororphic函数,并具有朱莉娅集合和逃逸集的定位尺寸。
Bergweiler and Kotus gave sharp upper bounds for the Hausdorff dimension of the escaping set of a meromorphic function in the Eremenko-Lyubich class, in terms of the order of the function and the maximal multiplicity of the poles. We show that these bounds are also sharp in the Speiser class. We apply this method also to construct meromorphic functions in the Speiser class with preassigned dimensions of the Julia set and the escaping set.