论文标题
锥体和收缩定理,用于复杂分析空间之间的投射形态
Cone and contraction theorem for projective morphisms between complex analytic spaces
论文作者
论文摘要
我们在适当的复杂分析环境中讨论锥体和收缩定理。更确切地说,我们建立了正常对的锥体和收缩定理,用于复杂分析空间之间的射向形态。该结果是用于复杂分析对数规范对的最小模型程序的起点。在本文中,我们主要对普通对感兴趣,其奇异性比Kawamata对数末端奇异性差。
We discuss the cone and contraction theorem in a suitable complex analytic setting. More precisely, we establish the cone and contraction theorem of normal pairs for projective morphisms between complex analytic spaces. This result is a starting point of the minimal model program for complex analytic log canonical pairs. In this paper, we are mainly interested in normal pairs whose singularities are worse than kawamata log terminal singularities.