论文标题

M^4i:多模式模型会员资格推理

M^4I: Multi-modal Models Membership Inference

论文作者

Hu, Pingyi, Wang, Zihan, Sun, Ruoxi, Wang, Hu, Xue, Minhui

论文摘要

随着机器学习技术的发展,研究的注意力已从单模式学习转变为多模式学习,因为现实世界中的数据以不同的方式存在。但是,多模式模型通常比单模式模型具有更多的信息,并且通常将其应用于敏感情况,例如医疗报告生成或疾病鉴定。与针对机器学习分类器的现有会员推断相比,我们关注的是多模式模型的输入和输出以不同方式(例如图像字幕)的问题。这项工作通过会员推理攻击的角度研究了多模式模型的隐私泄漏,这是确定数据记录是否涉及模型培训过程的过程。为了实现这一目标,我们提出了使用两种攻击方法来推断成员身份状态的多模式模型成员资格推理(M^4i),分别命名为基于公表示的(MB)M^4i和基于特征(FB)M^4i。更具体地说,MB M^4i在攻击时采用相似指标来推断目标数据成员资格。 FB M^4i使用预先训练的阴影多模式提取器来通过比较提取的输入和输出功能的相似性来实现数据推理攻击的目的。广泛的实验结果表明,两种攻击方法都可以实现强大的性能。在不受限制的情况下,平均可以获得攻击成功率的72.5%和94.83%。此外,我们评估了针对攻击的多种防御机制。 M^4i攻击的源代码可在https://github.com/multimodalmi/multimodal-membership-inference.git上公开获得。

With the development of machine learning techniques, the attention of research has been moved from single-modal learning to multi-modal learning, as real-world data exist in the form of different modalities. However, multi-modal models often carry more information than single-modal models and they are usually applied in sensitive scenarios, such as medical report generation or disease identification. Compared with the existing membership inference against machine learning classifiers, we focus on the problem that the input and output of the multi-modal models are in different modalities, such as image captioning. This work studies the privacy leakage of multi-modal models through the lens of membership inference attack, a process of determining whether a data record involves in the model training process or not. To achieve this, we propose Multi-modal Models Membership Inference (M^4I) with two attack methods to infer the membership status, named metric-based (MB) M^4I and feature-based (FB) M^4I, respectively. More specifically, MB M^4I adopts similarity metrics while attacking to infer target data membership. FB M^4I uses a pre-trained shadow multi-modal feature extractor to achieve the purpose of data inference attack by comparing the similarities from extracted input and output features. Extensive experimental results show that both attack methods can achieve strong performances. Respectively, 72.5% and 94.83% of attack success rates on average can be obtained under unrestricted scenarios. Moreover, we evaluate multiple defense mechanisms against our attacks. The source code of M^4I attacks is publicly available at https://github.com/MultimodalMI/Multimodal-membership-inference.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源