论文标题

快速分层的低级视图因子矩阵,用于行星表面上的热辐照度

Fast hierarchical low-rank view factor matrices for thermal irradiance on planetary surfaces

论文作者

Potter, Samuel F., Bertone, Stefano, Schörghofer, Norbert, Mazarico, Erwan

论文摘要

我们提出了一种用于压缩辐射传热和计算机图形中常用的辐射度视图因子模型的算法。我们使用启发的格式,该格式受层次偏置低等级格式的启发,在该格式中,使用Quadtree或Octree递归对元素进行了递归分区,并且使用稀疏的单数值分解压缩块 - 层次矩阵是使用动态编程组装的。激励的应用是在巨大的行星表面上进行时间依赖的热建模,重点是永久阴影的陨石坑,这些陨石坑通过间接辐照接收能量。在这种情况下,形状模型由大量符合粗糙表面的三角形小平面组成。在每个时间步骤中,必须将数量的三角形到三角形散射的磁通量求和。也就是说,随着太阳在天空中移动,我们必须解决相同的视图因子系统系统,以实现可能无限的时间变化的右侧。我们首先使用合成球形帽形的火山口进行数值实验,在该火山口上,在分析上可用的平衡温度。我们还使用从绕航天器恢复的数字高程模型得出的行星表面的三角形网格测试我们的实现。我们的结果表明,压缩视图因子矩阵可以在二次时间内组装,这与组装完整视图矩阵本身所需的时间相当。组装过程中的内存需求减少了一个很大的因素。最后,对于一系列的压缩公差,压缩视图因子矩阵的大小和所得矩阵矢量产物的速度均线性刻度(与完整矩阵相反),从而在处理时间和内存空间中节省了数量级。

We present an algorithm for compressing the radiosity view factor model commonly used in radiation heat transfer and computer graphics. We use a format inspired by the hierarchical off-diagonal low rank format, where elements are recursively partitioned using a quadtree or octree and blocks are compressed using a sparse singular value decomposition -- the hierarchical matrix is assembled using dynamic programming. The motivating application is time-dependent thermal modeling on vast planetary surfaces, with a focus on permanently shadowed craters which receive energy through indirect irradiance. In this setting, shape models are comprised of a large number of triangular facets which conform to a rough surface. At each time step, a quadratic number of triangle-to-triangle scattered fluxes must be summed; that is, as the sun moves through the sky, we must solve the same view factor system of equations for a potentially unlimited number of time-varying righthand sides. We first conduct numerical experiments with a synthetic spherical cap-shaped crater, where the equilibrium temperature is analytically available. We also test our implementation with triangle meshes of planetary surfaces derived from digital elevation models recovered by orbiting spacecrafts. Our results indicate that the compressed view factor matrix can be assembled in quadratic time, which is comparable to the time it takes to assemble the full view matrix itself. Memory requirements during assembly are reduced by a large factor. Finally, for a range of compression tolerances, the size of the compressed view factor matrix and the speed of the resulting matrix vector product both scale linearly (as opposed to quadratically for the full matrix), resulting in orders of magnitude savings in processing time and memory space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源