论文标题

Unruh效应和Takagi的统计量反演

Unruh Effect and Takagi's Statistics Inversion in Strained Graphene

论文作者

Bhardwaj, Anshuman, Sheehy, Daniel E.

论文摘要

我们介绍了一项理论研究,该研究是关于蜂窝晶格中如何在空间相变的准速度速度,该速度可以使用劳累的石墨烯或工程的冷原子光学晶格中实现,这些光学晶格具有空间依赖于当地的隧道幅度,可以产生Rindler Hamiltonian在rindler hamiltonian中体现出一个观察者的Spacection in Minkackiestementskikostkiskiperty in Minkackieskiestemencection。在此设置中,空间变化的隧道(或应变)的突然切换产生了电子孔对的自发产生,这是以UNRUH温度为特征的Unruh效应的模拟版本。我们讨论这种热行为以及高加族人的统计倒置如何在光发射和扫描隧道显微镜实验中表现出来。我们还计算了平均电子电导率,并发现它与频率$ω$线性生长。最后,我们发现,零环境温度下的总系统能量看起来像是由于上述统计倒置而导致的光子的黑体结果,而对于最初的热激发费米的热激发状态,总内能进行刺激的粒子减少。

We present a theoretical study of how a spatially-varying quasiparticle velocity in honeycomb lattices, achievable using strained graphene or in engineered cold-atom optical lattices that have a spatial dependence to the local tunneling amplitude, can yield the Rindler Hamiltonian embodying an observer accelerating in Minkowski spacetime. Within this setup, a sudden switch-on of the spatially-varying tunneling (or strain) yields a spontaneous production of electron-hole pairs, an analogue version of the Unruh effect characterized by the Unruh temperature. We discuss how this thermal behavior, along with Takagi's statistics inversion, can manifest themselves in photo-emission and scanning tunneling microscopy experiments. We also calculate the average electronic conductivity and find that it grows linearly with frequency $ω$. Finally, we find that the total system energy at zero environment temperature looks like Planck's blackbody result for photons due to the aforementioned statistics inversion, whereas for an initial thermally excited state of fermions, the total internal energy undergoes stimulated particle reduction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源