论文标题
无人机导航和避免RGB-D摄像头的实时动态障碍物跟踪和映射系统
A real-time dynamic obstacle tracking and mapping system for UAV navigation and collision avoidance with an RGB-D camera
论文作者
论文摘要
实时动态环境感知对于拥挤空间的自动机器人至关重要。尽管流行的基于体素的映射方法可以有效地用任意复杂的形状表示3D障碍,但它们几乎无法区分静态和动态障碍,从而导致避免障碍物的性能有限。尽管在自动驾驶中存在许多基于学习的动态障碍检测算法,但四轮驱动器的有限计算资源无法使用这些方法实现实时性能。为了解决这些问题,我们为使用RGB-D摄像头提出了一个实时动态障碍物跟踪和映射系统,以避开四轮驱动器障碍物。拟议的系统首先利用带有占用体素图的深度图像来生成潜在的动态障碍区域作为建议。使用障碍区域的建议,Kalman滤波器和我们的连续性滤波器将应用于跟踪每个动态障碍物。最后,使用追踪动态障碍的状态,基于马尔可夫链提出了环境感知的轨迹预测方法。我们使用定制的四轮驱动器和导航计划者实施了建议的系统。仿真和物理实验表明,我们的方法可以成功地跟踪和代表动态环境中的障碍,并安全地避免障碍。我们的软件可在GitHub上作为开源ROS包装。
The real-time dynamic environment perception has become vital for autonomous robots in crowded spaces. Although the popular voxel-based mapping methods can efficiently represent 3D obstacles with arbitrarily complex shapes, they can hardly distinguish between static and dynamic obstacles, leading to the limited performance of obstacle avoidance. While plenty of sophisticated learning-based dynamic obstacle detection algorithms exist in autonomous driving, the quadcopter's limited computation resources cannot achieve real-time performance using those approaches. To address these issues, we propose a real-time dynamic obstacle tracking and mapping system for quadcopter obstacle avoidance using an RGB-D camera. The proposed system first utilizes a depth image with an occupancy voxel map to generate potential dynamic obstacle regions as proposals. With the obstacle region proposals, the Kalman filter and our continuity filter are applied to track each dynamic obstacle. Finally, the environment-aware trajectory prediction method is proposed based on the Markov chain using the states of tracked dynamic obstacles. We implemented the proposed system with our custom quadcopter and navigation planner. The simulation and physical experiments show that our methods can successfully track and represent obstacles in dynamic environments in real-time and safely avoid obstacles. Our software is available on GitHub as an open-source ROS package.