论文标题

在$ \ mathrm {gl}(n)$ - 谎言的模块结构nilpotent关联相对自由代数

On the $\mathrm{GL}(n)$-module structure of Lie nilpotent associative relatively free algebras

论文作者

Hristova, Elitza

论文摘要

令$ k \ left \ langle x \ right \ rangle $表示由特征$ 0 $的字段$ k $上的field $ k $上的一组$ x = \ {x_1,\ dots,x_n \} $生成的免费关联代数。让$ i_p $,对于$ p \ geq 2 $,表示$ k \ weft \ langle x \ langle x \ ryct \ rangle $ in Form $ $ $ [u_1,\ dots,u_p] $生成的双面理想,其中$ _1,$ u_1,u_1,u_p \ dots,u_p \ in u__p \ in k \ weft \ weft \ weft \ langle x \ rangle x \ rangle x \。我们讨论$ \ mathrm {gl}(n,k)$ - 商的模块结构$ k \ left \ langle x \ right x \ right \ rangle / i_ {p+1} $在标准对角线下,$ p \ geq 1 $。我们对分区$λ$的值进行了限制,以使不可修复的$ \ mathrm {gl}(n,k)$ - 模块$v_λ$出现在$ k \ left \ weft \ langle x \ rangle x \ ryn \ rangle \ rangle / i_ _ {p+1} $ as a $ \ mathrm {gl mathrm {gl} $ {作为一个应用程序,我们采用$ k = \ mathbb {c} $,我们考虑了不变的代数$(\ mathbb {c} \ left \ langle x \ rangle x \ rangle \ rangle / i_ {p+1}) $ \ mathrm {o}(n,\ mathbb {c})$,$ \ mathrm {so}(n,\ mathbb {c})$,或$ \ mathrm {sp}(2s,\ m mathbb {c})$(for $ n = 2s $ n = 2s $)。由Domokos和Drensky定理,$(\ Mathbb {C} \ left \ langle x \ right \ rangle / i_ {p+1})^g $有限地生成。在最小生成集中,我们在$(\ mathbb {c} \ langle x \ rangle / i_ {p+1})^g $的$(\ mathbb {c} \ left \ langle x \ rangle x \ rangle x \ rangle x \ rangle x \ rangle x \ rangle x^g $中,我们给出了上限。 In a similar way, we consider also the algebra of invariants $(\mathbb{C}\left\langle X \right\rangle / I_{p+1})^{G}$, where $G=\mathrm{UT}(n, \mathbb{C})$, and give an upper bound on the degree of generators in a minimal generating set.这些结果从经典不变理论的角度从$ \ mathbb {c} \ left \ langle x \ rangle^g $中提供了有关不变性的有用信息。特别是,对于上面的所有$ g $,我们给出了一个标准,当$ \ mathbb {c} \ left \ langle x \ right \ rangle $属于$ i_p $时。

Let $K\left\langle X \right\rangle$ denote the free associative algebra generated by a set $X = \{x_1, \dots, x_n\}$ over a field $K$ of characteristic $0$. Let $I_p$, for $p \geq 2$, denote the two-sided ideal in $K\left\langle X \right\rangle$ generated by all commutators of the form $[u_1, \dots, u_p]$, where $u_1, \dots, u_p \in K\left\langle X \right\rangle$. We discuss the $\mathrm{GL}(n, K)$-module structure of the quotient $K\left\langle X \right\rangle / I_{p+1}$ for all $p \geq 1$ under the standard diagonal action. We give a bound on the values of partitions $λ$ such that the irreducible $\mathrm{GL}(n, K)$-module $V_λ$ appears in the decomposition of $K\left\langle X \right\rangle / I_{p+1}$ as a $\mathrm{GL}(n, K)$-module. As an application, we take $K = \mathbb{C}$ and we consider the algebra of invariants $(\mathbb{C}\left\langle X \right\rangle / I_{p+1})^G$ for $G = \mathrm{SL}(n, \mathbb{C})$, $\mathrm{O}(n, \mathbb{C})$, $\mathrm{SO}(n, \mathbb{C})$, or $\mathrm{Sp}(2s, \mathbb{C})$ (for $n=2s$). By a theorem of Domokos and Drensky, $(\mathbb{C}\left\langle X \right\rangle / I_{p+1})^G$ is finitely generated. We give an upper bound on the degree of generators of $(\mathbb{C}\left\langle X \right\rangle / I_{p+1})^G$ in a minimal generating set. In a similar way, we consider also the algebra of invariants $(\mathbb{C}\left\langle X \right\rangle / I_{p+1})^{G}$, where $G=\mathrm{UT}(n, \mathbb{C})$, and give an upper bound on the degree of generators in a minimal generating set. These results provide useful information about the invariants in $\mathbb{C}\left\langle X \right\rangle^G$ from the point of view of Classical Invariant Theory. In particular, for all $G$ as above we give a criterion when a $G$-invariant of $\mathbb{C}\left\langle X \right\rangle$ belongs to $I_p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源