论文标题

自主系统模拟中的变质测试

Metamorphic Testing in Autonomous System Simulations

论文作者

Adigun, Jubril Gbolahan, Eisele, Linus, Felderer, Michael

论文摘要

事实证明,变质测试对于许多领域中的测试案例生成和故障检测有效。它是一种软件测试策略,它使用程序的输入输出对之间的某些关系,称为变质关系。这种方法与自主系统域相关,因为它在可能难以确定的给定测试输入结果的情况下有助于。因此,在本文中,我们概述了变质测试以及在自主系统域中的实现。我们在使用GNC API的自动无人机中实现了障碍物检测和回避任务,并在凉亭中的模拟旁边实现了障碍物。特别是,我们描述了对有效变质关系发展至关重要的特性和最佳实践。我们还展示了两种用于单态和多个无人机的变质测试的变质关系。根据变质测试,我们的关系揭示了实施和回避算法的几个属性和一些弱点。结果表明,变质测试在自主系统领域具有巨大的潜力,应考虑在该领域的质量保证。

Metamorphic testing has proven to be effective for test case generation and fault detection in many domains. It is a software testing strategy that uses certain relations between input-output pairs of a program, referred to as metamorphic relations. This approach is relevant in the autonomous systems domain since it helps in cases where the outcome of a given test input may be difficult to determine. In this paper therefore, we provide an overview of metamorphic testing as well as an implementation in the autonomous systems domain. We implement an obstacle detection and avoidance task in autonomous drones utilising the GNC API alongside a simulation in Gazebo. Particularly, we describe properties and best practices that are crucial for the development of effective metamorphic relations. We also demonstrate two metamorphic relations for metamorphic testing of single and more than one drones, respectively. Our relations reveal several properties and some weak spots of both the implementation and the avoidance algorithm in the light of metamorphic testing. The results indicate that metamorphic testing has great potential in the autonomous systems domain and should be considered for quality assurance in this field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源