论文标题

微生物组数据中的组成中介效应选择的贝叶斯联合模型

A Bayesian Joint Model for Compositional Mediation Effect Selection in Microbiome Data

论文作者

Fu, Jingyan, Koslovsky, Matthew D., Neophytou, Andreas M., Vannucci, Marina

论文摘要

由于数据和过度分散的高维和组成结构,分析微生物组研究中高通量测序技术产生的多元计数数据具有挑战性。实际上,研究人员通常有兴趣研究微生物组如何介导指定的治疗与观察到的表型反应之间的关系。为组成中介分析而设计的现有方法无法同时确定直接效应,相对间接效应和总体间接效应的存在,同时量化其不确定性。我们提出了用于组成数据的贝叶斯联合模型的公式,该模型允许对高维中介分析中各种因果估计的识别,估计和不确定性定量。我们进行仿真研究,并将我们方法的中介效应选择性能与现有方法进行比较。最后,我们将方法应用于研究早期小鼠体重的亚治疗抗生素治疗效果的基准数据集。

Analyzing multivariate count data generated by high-throughput sequencing technology in microbiome research studies is challenging due to the high-dimensional and compositional structure of the data and overdispersion. In practice, researchers are often interested in investigating how the microbiome may mediate the relation between an assigned treatment and an observed phenotypic response. Existing approaches designed for compositional mediation analysis are unable to simultaneously determine the presence of direct effects, relative indirect effects, and overall indirect effects, while quantifying their uncertainty. We propose a formulation of a Bayesian joint model for compositional data that allows for the identification, estimation, and uncertainty quantification of various causal estimands in high-dimensional mediation analysis. We conduct simulation studies and compare our method's mediation effects selection performance with existing methods. Finally, we apply our method to a benchmark data set investigating the sub-therapeutic antibiotic treatment effect on body weight in early-life mice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源