论文标题
Parrondo的悖论用于离散时间量子在动量空间中
Parrondo's paradox for discrete-time quantum walks in momentum space
论文作者
论文摘要
我们调查了实施一系列量子步行的可能性,该步行的概率分布赋予了整体上的胜利概率,而单一步行(Parrondo的悖论)为负。特别是,我们想到了一个实验性实现的,其中玻色网凝结物是步行者的空间是动量空间。详细分析了我们离散时间量子步行的硬币操作的精确实施中的实验问题。我们研究硬币的时间依赖性相位波动以及由冷凝水的有限动量宽度引起的扰动。我们确认了帕伦多(Parrondo)悖论的可见性,用于步行几百步的实验可用时间尺度。
We investigate the possibility of implementing a sequence of quantum walks whose probability distributions give an overall positive winning probability, while it is negative for the single walks (Parrondo's paradox). In particular, we have in mind an experimental realisation with a Bose-Einstein condensate in which the walker's space is momentum space. Experimental problems in the precise implementation of the coin operations for our discrete-time quantum walks are analysed in detail. We study time-dependent phase fluctuations of the coins as well as perturbations arising from the finite momentum width of the condensate. We confirm the visibility of Parrondo's paradox for experimentally available time scales of up to a few hundred steps of the walk.