论文标题

使用回归技术预测学生的学习风格

Predicting students' learning styles using regression techniques

论文作者

Altamimi, Ahmad Mousa, Azzeh, Mohammad, Albashayreh, Mahmoud

论文摘要

传统的学习系统已经迅速响应了共同的大流行,并转向了在线或远程学习。在线学习需要一种个性化方法,因为学习者和讲师之间的互动很小,学习者具有最适合他们的特定学习方法。个性化方法之一是检测学习者的学习方式。为了检测学习风格,已经提出了几项使用分类技术的作品。但是,当学习者没有主导风格或学习风格的混合时,当前的检测模型将无效。因此,这项研究的目的是双重的。首先,基于回归分析构建预测模型提供了一种推断首选学习方式的概率方法。其次,比较用于检测学习样式的回归模型和分类模型。为了基础我们的概念模型,已经根据从72名学生的样本中使用视觉,听觉,阅读/写作和Kinesthetic(Vark's)库存问卷调查了一组机器学习算法。结果表明,与分类算法相比,回归技术在现实世界情景中更准确和代表性,在该算法中,学生可能具有多种学习风格,但具有不同的概率。我们认为,这项研究将有助于教育机构参与教学过程中的学习风格。

Traditional learning systems have responded quickly to the COVID pandemic and moved to online or distance learning. Online learning requires a personalization method because the interaction between learners and instructors is minimal, and learners have a specific learning method that works best for them. One of the personalization methods is detecting the learners' learning style. To detect learning styles, several works have been proposed using classification techniques. However, the current detection models become ineffective when learners have no dominant style or a mix of learning styles. Thus, the objective of this study is twofold. Firstly, constructing a prediction model based on regression analysis provides a probabilistic approach for inferring the preferred learning style. Secondly, comparing regression models and classification models for detecting learning style. To ground our conceptual model, a set of machine learning algorithms have been implemented based on a dataset collected from a sample of 72 students using visual, auditory, reading/writing, and kinesthetic (VARK's) inventory questionnaire. Results show that regression techniques are more accurate and representative for real-world scenarios than classification algorithms, where students might have multiple learning styles but with different probabilities. We believe that this research will help educational institutes to engage learning styles in the teaching process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源