论文标题
具有生物学上可行的决定因素最大化神经网络,用于相关来源的盲区分离
Biologically-Plausible Determinant Maximization Neural Networks for Blind Separation of Correlated Sources
论文作者
论文摘要
提取复杂刺激的潜在来源对于理解世界至关重要。尽管大脑不断解决这种盲源分离(BSS)问题,但其算法仍然未知。先前关于生物学上可行的BSS算法的工作假设观察到的信号是统计上独立或不相关的源的线性混合物,从而限制了这些算法的适用性领域。为了克服这一局限性,我们提出了新型的生物学上的神经网络,以盲目地分离潜在的依赖/相关来源。与以前的工作不同,我们假设源向量的一般几何形状,而不是统计条件,允许分离潜在的依赖/相关源。具体而言,我们假设源矢量足够散布在其域中,可以用某些多面体描述。然后,我们考虑通过det-Max标准恢复这些源,这最大化了输出相关矩阵的决定因素,以实施类似的差异来为源估计。从这个规范性原理开始,并使用加权相似性匹配方法,该方法可以通过本地学习规则适应任意线性变换,我们得出了两层具有生物学上的神经网络算法,这些神经网络算法可以将混合物分离为来自各种源域的来源。我们证明,我们的算法在相关的源分离问题上优于其他生物学上的BSS算法。
Extraction of latent sources of complex stimuli is critical for making sense of the world. While the brain solves this blind source separation (BSS) problem continuously, its algorithms remain unknown. Previous work on biologically-plausible BSS algorithms assumed that observed signals are linear mixtures of statistically independent or uncorrelated sources, limiting the domain of applicability of these algorithms. To overcome this limitation, we propose novel biologically-plausible neural networks for the blind separation of potentially dependent/correlated sources. Differing from previous work, we assume some general geometric, not statistical, conditions on the source vectors allowing separation of potentially dependent/correlated sources. Concretely, we assume that the source vectors are sufficiently scattered in their domains which can be described by certain polytopes. Then, we consider recovery of these sources by the Det-Max criterion, which maximizes the determinant of the output correlation matrix to enforce a similar spread for the source estimates. Starting from this normative principle, and using a weighted similarity matching approach that enables arbitrary linear transformations adaptable by local learning rules, we derive two-layer biologically-plausible neural network algorithms that can separate mixtures into sources coming from a variety of source domains. We demonstrate that our algorithms outperform other biologically-plausible BSS algorithms on correlated source separation problems.