论文标题
局部位置空间两核子的电势从导致手性有效场理论的第四顺序
Local position-space two-nucleon potentials from leading to fourth order of chiral effective field theory
论文作者
论文摘要
我们通过手性有效的田间理论的四个顺序从领先顺序(LO)到近代到领先的序列(N3Lo,第四阶,第四阶),我们提出了局部位置空间的手性NN潜力。这些电势的远程部分是由Roy-Steiner方程分析中确定的非常精确的PI-N LEC固定的。在最高级(N3LO)上,低于190 MEV实验室能量的NN数据以1.45的可观Chi^2/数据复制。 N3LO电位与现象学的Argonne V_18(AV18)的比较表明,通过手性对称性统治的中间范围的两个电位之间的实质性一致,因此为现象学AV18电位提供了手性的基础。我们的手性NN电位可以作为对核结构和反应进行系统的核算计算的坚实基础,从而可以进行全面的误差分析。特别是,按命令开发电位的顺序将使每个顺序处的截断误差可靠地确定。我们的新的局部位置空间电位家族与较弱的张量力的现有电位不同,如杜特隆相对较低的D-state概率所反映的(我们的N3LO电位的P_D较小或等于4.0%),并预测了Triton结合能量以上8.00 MEV(单独使用两体)。结果,当在从头算计算中应用于光和中间质量核时,我们的潜力可能会导致不同的预测,并可能有助于解决显微镜核结构中的一些杰出问题。
We present local, position-space chiral NN potentials through four orders of chiral effective field theory ranging from leading order (LO) to next-to-next-to-next-to-leading order (N3LO, fourth order) of the Delta-less version of the theory. The long-range parts of these potentials are fixed by the very accurate pi-N LECs as determined in the Roy-Steiner equations analysis. At the highest order (N3LO), the NN data below 190 MeV laboratory energy are reproduced with the respectable chi^2/datum of 1.45. A comparison of the N3LO potential with the phenomenological Argonne v_18 (AV18) potential reveals substantial agreement between the two potentials in the intermediate range ruled by chiral symmetry, thus, providing a chiral underpinning for the phenomenological AV18 potential. Our chiral NN potentials may serve as a solid basis for systematic ab initio calculations of nuclear structure and reactions that allow for a comprehensive error analysis. In particular, the order by order development of the potentials will make possible a reliable determination of the truncation error at each order. Our new family of local position-space potentials differs from existing potentials of this kind by a weaker tensor force as reflected in relatively low D-state probabilities of the deuteron (P_D less or equal 4.0% for our N3LO potentials) and predictions for the triton binding energy above 8.00 MeV (from two-body forces alone). As a consequence, our potentials may lead to different predictions when applied to light and intermediate-mass nuclei in ab initio calculations and, potentially, help solve some of the outstanding problems in microscopic nuclear structure.