论文标题

重言式交集数字的Ehrhart理论

An Ehrhart Theory For Tautological Intersection Numbers

论文作者

Afandi, Adam

论文摘要

我们发现,$ \ bar {\ mathcal {m}} _ {g,n} $上的重言式交叉数,稳定的属属$ g $ curves的模uli空间,标记为$ n $,是对部分多型物体的ehrhart多项式的评估。为了证明这一点,我们将重言式相交数字的Virasoro限制因素作为整数值多项式的递归。然后,我们应用Breuer定理,该定理通过其$ f^*$ - 矢量的非负性分类,将部分多层复合物的Ehrhart多项式分类。在维度1和2中,我们表明出现的多面体复合物为\ emph {insion-Out polytopes},即通过超平面布置解剖的多面体。

We discover that tautological intersection numbers on $\bar{\mathcal{M}}_{g, n}$, the moduli space of stable genus $g$ curves with $n$ marked points, are evaluations of Ehrhart polynomials of partial polytopal complexes. In order to prove this, we realize the Virasoro constraints for tautological intersection numbers as a recursion for integer-valued polynomials. Then we apply a theorem of Breuer that classifies Ehrhart polynomials of partial polytopal complexes by the nonnegativity of their $f^*$-vector. In dimensions 1 and 2, we show that the polytopal complexes that arise are \emph{inside-out polytopes} i.e. polytopes that are dissected by a hyperplane arrangement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源