论文标题

共形领域理论中n-Partite信息的各个方面

Aspects of N-partite information in conformal field theories

论文作者

Agón, César A., Bueno, Pablo, Andino, Oscar Lasso, López, Alejandro Vilar

论文摘要

我们为$ n $ partite信息($ i_n $)的空间区域的$ n $ partite信息提供了几个新结果,处于$ d $ d $二维的共形野外理论的基础状态。首先,我们证明$ i_n $可以用扭曲运营商的单个$ n $点功能编写。我们认为,在所有相互分离的极限上,$ n $ - 分段信息量表为$ i_n \ sim r^{ - 2nδ} $,其中$ r $是区域对和$δ$之间的典型距离,是最低的初级规模尺度。在球形纠缠表面的情况下,我们以2,3和4点功能的最低维度函数获得了$ i_4 $的完全显式公式。然后,我们考虑晶格中的三维标量场。我们验证了预测的长距离缩放,并提供了有力的证据,表明$ i_n $始终对通用区域和该理论的任意$ n $均为积极。对于$ i_4 $,我们发现我们的通用公式与磁盘区域的晶格结果之间的出色数值协议。我们还为更一般区域和自由标量和自由费米的一般区域和一般分离执行了晶格计算,并猜想通过相应的磁盘纠缠熵系数归一化,标量结果始终大于fermion。最后,我们明确验证全息理论中$ n $ - 分时信息与一般维度的球形纠缠表面中的$ n $明确信息之间的平等性。

We present several new results for the $N$-partite information, $I_N$, of spatial regions in the ground state of $d$-dimensional conformal field theories. First, we show that $I_N$ can be written in terms of a single $N$-point function of twist operators. Using this, we argue that in the limit in which all mutual separations are much greater than the regions sizes, the $N$-partite information scales as $I_N \sim r^{-2NΔ}$, where $r$ is the typical distance between pairs of regions and $Δ$ is the lowest primary scaling dimension. In the case of spherical entangling surfaces, we obtain a completely explicit formula for the $I_4$ in terms of 2-, 3- and 4-point functions of the lowest-dimensional primary. Then, we consider a three-dimensional scalar field in the lattice. We verify the predicted long-distance scaling and provide strong evidence that $I_N$ is always positive for general regions and arbitrary $N$ for that theory. For the $I_4$, we find excellent numerical agreement between our general formula and the lattice result for disk regions. We also perform lattice calculations of the mutual information for more general regions and general separations both for a free scalar and a free fermion, and conjecture that, normalized by the corresponding disk entanglement entropy coefficients, the scalar result is always greater than the fermion one. Finally, we verify explicitly the equality between the $N$-partite information of bulk and boundary fields in holographic theories for spherical entangling surfaces in general dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源