论文标题

一般区域上的硬阈值超中断

Hard thresholding hyperinterpolation over general regions

论文作者

An, Congpei, Ran, Jiashu

论文摘要

本文提出了一种新颖的高中性化变体,称为硬阈值高中断。该学位$ n $的近似方案利用了硬阈值操作员过滤所有高中性系数,该系数通过代数精确性$ 2N $的正交规则近似连续函数的傅立叶系数。我们证明,硬阈值超插值是$ \ ell_0 $ regultared加权离散最小二乘近似问题的独特解决方案。硬阈值超插值不仅具有高插值和交换性,而且在离散(半)内部产品方面也遵守毕达哥拉斯定理。根据对基督佛尔函数的倒数的估计,我们介绍了硬阈值高中间算子的统一规范的上限。此外,硬阈值高接个上课具有类似于拉索超插值的基础选择能力。为了判断硬阈值和Lasso HyperPollat​​ions的$ L_2 $错误,我们提出了一个标准,将正则化参数与噪声系数的乘积和高接口系数的符号集成在一起。球形三角形和立方体上的数值示例证明了硬阈值高中断的能力。

This paper proposes a novel variant of hyperinterpolation, called hard thresholding hyperinterpolation. This approximation scheme of degree $n$ leverages a hard thresholding operator to filter all hyperinterpolation coefficients, which approximate the Fourier coefficients of a continuous function by a quadrature rule with algebraic exactness $2n$. We prove that hard thresholding hyperinterpolation is the unique solution to an $\ell_0$-regularized weighted discrete least squares approximation problem. Hard thresholding hyperinterpolation is not only idempotent and commutative with hyperinterpolation, but also adheres to the Pythagorean theorem in terms of the discrete (semi) inner product. By the estimate of the reciprocal of Christoffel function, we present the upper bound of the uniform norm of hard thresholding hyperinterpolation operator. Additionally, hard thresholding hyperinterpolation possesses denoising and basis selection abilities akin to Lasso hyperinterpolation. To judge the $L_2$ errors of both hard thresholding and Lasso hyperinterpolations, we propose a criterion that integrates the regularization parameter with the product of noise coefficients and the signs of hyperinterpolation coefficients. Numerical examples on the sphere, spherical triangle and the cube demonstrate the denoising ability of hard thresholding hyperinterpolation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源