论文标题
某些星选择游戏的翻译结果
Translation Results for Some Star-Selection Games
论文作者
论文摘要
我们继续探索从空间的基本特征之间的连接产生的高级拓扑连接的方式,在这种情况下,侧重于Pixley-Roy Hyperspaces和统一空间中的星形选择原理。首先,我们找到一种将星形选择原则作为普通选择原则的方法,使我们能够将翻译定理应用于星形选择游戏。对于Pixley-Roy Hyperspaces,我们能够扩展M. Sakai的工作,并将Hyperspace的Star-Menger/Rothberger游戏连接到地面空间上的$ω$ -MENGER/ROTHBERGER游戏。一路上,我们发现了基本不变的人之间的联系。对于统一的空间,我们证明了带有统一盖的星际男子/罗斯伯格游戏相当于Menger/Rothberger游戏的游戏套均匀,从而增强了对LJ的观察。 Kočinac。
We continue to explore the ways in which high-level topological connections arise from connections between fundamental features of the spaces, in this case focusing on star-selection principles in Pixley-Roy hyperspaces and uniform spaces. First, we find a way to write star-selection principles as ordinary selection principles, allowing us to apply our translation theorems to star-selection games. For Pixley-Roy hyperspaces, we are able to extend work of M. Sakai and connect the star-Menger/Rothberger games on the hyperspace to the $ω$-Menger/Rothberger games on the ground space. Along the way, we uncover connections between cardinal invariants. For uniform spaces, we show that the star-Menger/Rothberger game played with uniform covers is equivalent to the Menger/Rothberger game played with uniform covers, reinforcing an observation of Lj. Kočinac.