论文标题
巴格特问题的答案是肯定的
The Answer to Baggett's Problem is Affirmative
论文作者
论文摘要
令$ψ$为$ l^2(\ r)$的Parceval小波,而负相位扩张$ V(ψ)$。扩张$ V(ψ)$的交点是零空间。换句话说,我们有\ begin {align*} \ bigCap_ {n \ in \ z} d^n \ edromline {\ textrm {span}}} \ {d^{\ textrm {\ textrm { - } m} m} t^\ ell文\ ellψ\ mid m m \ geq 0,m \ ge q eq 0,m,m,m,m,m,\ ell \ ell \ ell \ in \ in \ z \ z \ z \ z \ z \ z \ z \ z \} = \}。 \ end {align*}
Let $ψ$ be a Parceval wavelet in $L^2 (\R)$ with the space of negative dilates $V(ψ)$. The intersection of the dilates $V(ψ)$ is the zero space. In other words, we have \begin{align*} \bigcap_{n\in\Z} D^n \overline{\textrm{span}}\{D^{\textrm{-}m} T^\ell ψ\mid m\geq 0, m,\ell\in\Z\}=\{0\}. \end{align*}