论文标题
从北极岩中磁性增强的辐射扭矩(MRAT)对齐的粉尘极化的物理建模与Polaris
Physical Modeling of Dust Polarization from Magnetically Enhanced Radiative Torque (MRAT) Alignment in Protostellar Cores with POLARIS
论文作者
论文摘要
磁场($ \ textbf {b} $)是控制恒星形成过程的重要因素。观察$ \ textbf {b} $的主要方法是使用与$ \ textbf {b} $对齐的粉尘晶粒的偏光热排放。但是,在诸如原始核心之类的密集环境中,由于强烈的气体随机化而导致灰尘晶粒的对齐效率低下,因此不确定使用粉尘极化来追踪$ \ textbf {b} $。 Hoang $ \&$ Lazarian(2016)证明,如果灰尘颗粒含有嵌入的铁夹杂物,则辐射扭矩的谷物对齐将增强。在这里,我们扩展了北极星代码,以研究铁夹杂物对晶粒比对和粉尘偏振的影响,假设磁场均匀。我们发现,顺磁性晶粒在信封中产生的低极化度为$ p \ sim 1 \%$,并且由于谷物对齐的损失,在中部地区的$ p \ ll 1 \%$可忽略不计。相比之下,具有高水平的铁包裹物的谷物可以具有完美的对齐方式,并在信封中产生高$ p \ sim 40 \%$,而中央地区的低$ p \ p \ leq 10 \%$。 Grains with a moderate level of iron inclusions induce the polarization flipping from $\textbf{P}$ $\parallel$ $\textbf{B}$ at millimeter to $\textbf{P}$ $\perp$ $\textbf{B}$ at submillimeter due to the change in the internal alignment caused by slow internal relaxation. $ a \ geq10μm$的非常大的晶粒的弱对准降低了亚毫米波长在二分色灭绝的极化。我们发现P与铁夹杂物的水平之间存在正相关,该窗口打开了一个新的窗口,以限制通过灰尘层的粉尘锁定的铁的丰度。
Magnetic fields ($\textbf{B}$) are an important factor that controls the star formation process. The leading method to observe $\textbf{B}$ is using polarized thermal emission from dust grains aligned with $\textbf{B}$. However, in dense environments such as protostellar cores, dust grains may have inefficient alignment due to strong gas randomizations, so that using dust polarization to trace $\textbf{B}$ is uncertain. Hoang $\&$ Lazarian (2016) demonstrated that the grain alignment by RAdiative Torques is enhanced if dust grains contain embedded iron inclusions. Here we extend POLARIS code to study the effect of iron inclusions on grain alignment and thermal dust polarization toward a protostellar core, assuming uniform magnetic fields. We found that paramagnetic grains produce a low polarization degree of $p \sim 1\%$ in the envelope and negligible $p \ll 1\%$ in the central region due to the loss of grain alignment. In contrast, grains with a high level of iron inclusions can have perfect alignment and produce high $p \sim 40\%$ in the envelope and low $p \leq 10\%$ in the central region. Grains with a moderate level of iron inclusions induce the polarization flipping from $\textbf{P}$ $\parallel$ $\textbf{B}$ at millimeter to $\textbf{P}$ $\perp$ $\textbf{B}$ at submillimeter due to the change in the internal alignment caused by slow internal relaxation. The weak alignment of very large grains of $a \geq 10μm$ reduces the polarization by dichroic extinction at submillimeter wavelengths. We found a positive correlation between p and the level of iron inclusions, which opens a new window to constrain the abundance of irons locked in dust through dust polarimetry.