论文标题

部分可观测时空混沌系统的无模型预测

Reconciling econometrics with continuous maximum-entropy network models

论文作者

Di Vece, Marzio, Garlaschelli, Diego, Squartini, Tiziano

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In the study of economic networks, econometric approaches interpret the traditional Gravity Model specification as the expected link weight coming from a probability distribution whose functional form can be chosen arbitrarily, while statistical-physics approaches construct maximum-entropy distributions of weighted graphs, constrained to satisfy a given set of measurable network properties. In a recent, companion paper, we integrated the two approaches and applied them to the World Trade Web, i.e. the network of international trade among world countries. While the companion paper dealt only with discrete-valued link weights, the present paper extends the theoretical framework to continuous-valued link weights. In particular, we construct two broad classes of maximum-entropy models, namely the integrated and the conditional ones, defined by different criteria to derive and combine the probabilistic rules for placing links and loading them with weights. In the integrated models, both rules follow from a single, constrained optimization of the continuous Kullback-Leibler divergence; in the conditional models, the two rules are disentangled and the functional form of the weight distribution follows from a conditional, optimization procedure. After deriving the general functional form of the two classes, we turn each of them into a proper family of econometric models via a suitable identification of the econometric function relating the corresponding, expected link weights to macroeconomic factors. After testing the two classes of models on World Trade Web data, we discuss their strengths and weaknesses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源