论文标题

对卫星图像中深度学习使用的系统评价

A systematic review of the use of Deep Learning in Satellite Imagery for Agriculture

论文作者

Victor, Brandon, He, Zhen, Nibali, Aiden

论文摘要

农业研究对于增加粮食生产以满足未来几十年人口增加的要求至关重要。最近,卫星技术一直在迅速改善,深度学习在通用计算机视觉任务和许多应用领域中取得了很大的成功,这为改善农业土地的分析提供了重要的机会。在这里,我们对150项研究进行了系统的评论,以找到对卫星图像对农业研究的当前用途。尽管我们确定了5类农业监测任务,但大多数研究兴趣是作物细分和产量预测。我们发现,当使用时,现代深度学习方法始终超过大多数任务的传统机器学习。唯一的例外是,长期的短期记忆(LSTM)复发性神经网络并未始终超过随机森林(RF)进行产量预测。审查的研究在很大程度上采用了通用计算机视觉的方法,除了一个主要的遗漏:不利用基准数据集评估跨研究的模型,因此很难比较结果。此外,一些研究专门利用了卫星图像中可用的额外光谱分辨率,但是在审查的研究中,没有利用卫星图像的其他不同特性(例如空间模式的巨大规模)。

Agricultural research is essential for increasing food production to meet the requirements of an increasing population in the coming decades. Recently, satellite technology has been improving rapidly and deep learning has seen much success in generic computer vision tasks and many application areas which presents an important opportunity to improve analysis of agricultural land. Here we present a systematic review of 150 studies to find the current uses of deep learning on satellite imagery for agricultural research. Although we identify 5 categories of agricultural monitoring tasks, the majority of the research interest is in crop segmentation and yield prediction. We found that, when used, modern deep learning methods consistently outperformed traditional machine learning across most tasks; the only exception was that Long Short-Term Memory (LSTM) Recurrent Neural Networks did not consistently outperform Random Forests (RF) for yield prediction. The reviewed studies have largely adopted methodologies from generic computer vision, except for one major omission: benchmark datasets are not utilised to evaluate models across studies, making it difficult to compare results. Additionally, some studies have specifically utilised the extra spectral resolution available in satellite imagery, but other divergent properties of satellite images - such as the hugely different scales of spatial patterns - are not being taken advantage of in the reviewed studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源