论文标题

关于弥漫的最后一段时间的分解

On Decomposition of the Last Passage Time of Diffusions

论文作者

Egami, Masahiko, Kevkhishvili, Rusudan

论文摘要

对于常规的瞬态扩散,我们将其最后一次通过时间分解为某个状态$α$。这是通过使用高于$α$的领域的职业时间将原始扩散转换为两个扩散来实现的。基于这两个过程,两者都在$α$处具有反射边界,我们得出了最后一个段落时间的拉普拉斯变换的分解公式,以简单的形式以绿色功能为简单形式。该方程还导致绿色函数的分解公式。我们证明了这些公式在具有两个值参数的扩散中的应用。

For a regular transient diffusion, we provide a decomposition of its last passage time to a certain state $α$. This is accomplished by transforming the original diffusion into two diffusions using the occupation time of the area above and below $α$. Based on these two processes, both having a reflecting boundary at $α$, we derive the decomposition formula of the Laplace transform of the last passage time explicitly in a simple form in terms of Green functions. This equation also leads to the Green function's decomposition formula. We demonstrate an application of these formulas to a diffusion with two-valued parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源