论文标题
沉浸式:在所有天气条件下3D人体重建的强大MMWave-RGB融合
ImmFusion: Robust mmWave-RGB Fusion for 3D Human Body Reconstruction in All Weather Conditions
论文作者
论文摘要
来自RGB图像的3D人类重建实现了体面的天气条件,但在粗糙的天气中急剧降解。在粗糙的天气下,已使用互补的mmwave雷达重建3D人类关节和网络。但是,鉴于MMWave的稀疏性质和RGB图像的脆弱性,将RGB和MMWAVE信号结合起来以稳健的全天候3D 3D人类重建仍然是一个开放的挑战。在本文中,我们提出了浸没,这是在所有天气条件下重建3D人体的第一个MMWave-RGB融合解决方案。具体而言,我们的浸入由图像和点骨架组成,用于令牌特征提取和用于令牌融合的变压器模块。图像和点骨架从原始数据中完善了全局和本地特征,Fusion Transformer模块的目标是通过动态选择信息代币来有效地融合两种方式。在各种环境中捕获的大规模数据集(MMBody)上进行了广泛的实验表明,融合可以有效利用两种模式的信息在所有天气条件下实现强大的3D人体重建。此外,我们的方法的准确性明显优于基于最新的变压器的LIDAR-CAMERA融合方法。
3D human reconstruction from RGB images achieves decent results in good weather conditions but degrades dramatically in rough weather. Complementary, mmWave radars have been employed to reconstruct 3D human joints and meshes in rough weather. However, combining RGB and mmWave signals for robust all-weather 3D human reconstruction is still an open challenge, given the sparse nature of mmWave and the vulnerability of RGB images. In this paper, we present ImmFusion, the first mmWave-RGB fusion solution to reconstruct 3D human bodies in all weather conditions robustly. Specifically, our ImmFusion consists of image and point backbones for token feature extraction and a Transformer module for token fusion. The image and point backbones refine global and local features from original data, and the Fusion Transformer Module aims for effective information fusion of two modalities by dynamically selecting informative tokens. Extensive experiments on a large-scale dataset, mmBody, captured in various environments demonstrate that ImmFusion can efficiently utilize the information of two modalities to achieve a robust 3D human body reconstruction in all weather conditions. In addition, our method's accuracy is significantly superior to that of state-of-the-art Transformer-based LiDAR-camera fusion methods.