论文标题

部分可观测时空混沌系统的无模型预测

Vector bundles on fuzzy Kähler manifolds

论文作者

Adachi, Hiroyuki, Ishiki, Goro, Kanno, Satoshi

论文摘要

我们提出了对矢量束的矩阵正则化,上面是一般封闭的kähler歧管。该基质正则化作为Berezin-toeplitz量化的自然概括,并从载体束到矩阵的各部分给出了图。我们在很大程度上检查了地图的渐近行为。对于具有代数结构的矢量束,我们得出了部分的代数和相应矩阵的代数的美丽对应关系。我们在一个复杂的投影空间$ cp^n $和torus $ t^{2n} $上给出了两个明确的示例。

We propose a matrix regularization of vector bundles over a general closed Kähler manifold. This matrix regularization is given as a natural generalization of the Berezin-Toeplitz quantization and gives a map from sections of a vector bundle to matrices. We examine the asymptotic behaviors of the map in the large-$N$ limit. For vector bundles with algebraic structure, we derive a beautiful correspondence of the algebra of sections and the algebra of corresponding matrices in the large-$N$ limit. We give two explicit examples for monopole bundles over a complex projective space $CP^n$ and a torus $T^{2n}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源