论文标题

预测城市流动模式的最大熵方法

Maximum Entropy Approach for the Prediction of Urban Mobility Patterns

论文作者

Daniotti, Simone, Monechi, Bernardo, Ubaldi, Enrico

论文摘要

城市科学是一个相对较新的跨学科主题。它从基于代理的建模,随机过程和部分微分方程中借用了技术。但是,城市如何崛起,如何发展以及负责这些现象的机制仍然是开放的问题。尽管科学家在城市规划,运输计划和流行病建模中的重要性,但最近才开始开发预测工具。在这里,我们构建了一个完全可解释的统计模型,该模型仅结合最小限制数量,可以预测城市中产生的不同现象。使用有关不同意大利城市中汽车共享车辆运动的数据,我们使用最大熵(最大)原理推断出模型。有了它,我们描述了不同城市区域的活动,并将其应用于活动预测和异常检测(例如罢工和恶劣天气条件)。我们将我们的方法与针对预测的不同模型进行比较:Sarima模型和深度学习模型。我们发现,Maxent模型具有高度预测性,表现优于Sarimas,并且作为神经网络具有相似的结果。这些结果表明,在构建描述城市系统现象的强大和一般模型时,相关统计推断如何。本文确定了城市中发生的流程的重要可观察物,以深入了解推动其动态的基本力量。

The science of cities is a relatively new and interdisciplinary topic. It borrows techniques from agent-based modeling, stochastic processes, and partial differential equations. However, how the cities rise and fall, how they evolve, and the mechanisms responsible for these phenomena are still open questions. Scientists have only recently started to develop forecasting tools, despite their importance in urban planning, transportation planning, and epidemic spreading modeling. Here, we build a fully interpretable statistical model that, incorporating only the minimum number of constraints, can predict different phenomena arising in the city. Using data on the movements of car-sharing vehicles in different Italian cities, we infer a model using the Maximum Entropy (MaxEnt) principle. With it, we describe the activity in different city zones and apply it to activity forecasting and anomaly detection (e.g., strikes, and bad weather conditions). We compare our method with different models explicitly made for forecasting: SARIMA models and Deep Learning Models. We find that MaxEnt models are highly predictive, outperforming SARIMAs and having similar results as a Neural Network. These results show how relevant statistical inference can be in building a robust and general model describing urban systems phenomena. This article identifies the significant observables for processes happening in the city, with the perspective of a deeper understanding of the fundamental forces driving its dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源