论文标题
图表组的衡量性
Metrizability of CHART groups
论文作者
论文摘要
对于紧凑的Hausdorff允许的右拓扑(图)组$ g $,我们证明$ w(g)=πχ(g)$。这种平等以紧凑的拓扑群体而闻名。这意味着图表组的METRINISINE的标准:如果$ G $是首先计算的(2013年,Moors,Namioka)或$ G $是Fréchet(2013年,Glasner,Megrelishvili),或$ G $具有可计数的$π$ - Character(Character-Character(20222,20222,Reznichenko)。在连续假设(CH)假设下,一个依次紧凑的图表组可衡量。 Namioka的定理是,可迁移图表组是拓扑组扩展到重量较小的图表组。
For compact Hausdorff admissible right topological (CHART) group $G$, we prove $w(G)=πχ(G)$. This equality is well known for compact topological groups. This implies the criteria for the metrizability of CHART groups: if $G$ is first-countable (2013, Moors, Namioka) or $G$ is Fréchet (2013, Glasner, Megrelishvili), or $G$ has countable $π$-character (2022, Reznichenko) then $G$ is metrizable. Under the continuum hypothesis (CH) assumption, a sequentially compact CHART group is metrizable. Namioka's theorem that metrizable CHART groups are topological groups extends to CHART groups with small weight.