论文标题

从图形频谱的角度重新访问图形对比度学习

Revisiting Graph Contrastive Learning from the Perspective of Graph Spectrum

论文作者

Liu, Nian, Wang, Xiao, Bo, Deyu, Shi, Chuan, Pei, Jian

论文摘要

图形对比学习(GCL),通过增强图来学习节点表示,引起了相当大的关注。尽管各种增强策略的扩散,但一些基本问题仍然不清楚:GCL基本上将哪些信息编码到了学习的表示中?是否有一些不同扩展背后的一般图扩大规则?如果是这样,它们是什么,可以带来什么见解?在本文中,我们通过建立GCL和图形频谱之间的联系来回答这些问题。通过在光谱域中进行的实验研究,我们首先找到GCL的一般图扩展(游戏)规则,即两个增强图之间的高频零件的差异应大于低频部分的差异。该规则揭示了重新访问当前图表并设计新有效图的基本原则。然后,从理论上讲,我们证明了GCL能够通过对比不变定理学习不变性信息,以及我们的游戏规则,首次我们发现GCL学到的表示的表示形式基本上是编码低频信息,这解释了GCL为什么起作用。在此规则的指导下,我们提出了一个光谱图对比度学习模块(SPCO),该模块是一般且适合GCL友好的插件。我们将其与不同的现有GCL模型相结合,广泛的实验很好地表明,它可以进一步改善各种不同GCL方法的性能。

Graph Contrastive Learning (GCL), learning the node representations by augmenting graphs, has attracted considerable attentions. Despite the proliferation of various graph augmentation strategies, some fundamental questions still remain unclear: what information is essentially encoded into the learned representations by GCL? Are there some general graph augmentation rules behind different augmentations? If so, what are they and what insights can they bring? In this paper, we answer these questions by establishing the connection between GCL and graph spectrum. By an experimental investigation in spectral domain, we firstly find the General grAph augMEntation (GAME) rule for GCL, i.e., the difference of the high-frequency parts between two augmented graphs should be larger than that of low-frequency parts. This rule reveals the fundamental principle to revisit the current graph augmentations and design new effective graph augmentations. Then we theoretically prove that GCL is able to learn the invariance information by contrastive invariance theorem, together with our GAME rule, for the first time, we uncover that the learned representations by GCL essentially encode the low-frequency information, which explains why GCL works. Guided by this rule, we propose a spectral graph contrastive learning module (SpCo), which is a general and GCL-friendly plug-in. We combine it with different existing GCL models, and extensive experiments well demonstrate that it can further improve the performances of a wide variety of different GCL methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源