论文标题

湍流中的粒子聚类:深度学习的空间和统计特性的预测

Particle clustering in turbulence: Prediction of spatial and statistical properties with deep learning

论文作者

Chan, Yan-Mong, Manger, Natascha, Li, Yin, Yang, Chao-Chin, Zhu, Zhaohuan, Armitage, Philip J., Ho, Shirley

论文摘要

我们研究了深度学习对空气动力学耦合到湍流的颗粒聚类的效用。使用雅典娜++流体动力学代码中的拉格朗日粒子模块,我们模拟了各向同性强迫流体动力湍流的周期性结构域中爱泼斯坦阻力方案中颗粒的动力学。该设置是一种与Micron在早期行星形成中MM大小的尘埃颗粒碰撞生长有关的理想化模型。模拟数据用于训练U-NET深度学习模型,以预测粒子密度和速度场的栅格三维表示,作为输入相应的流体场。受过训练的模型定性地捕获了高度非线性方案中聚类颗粒的丝状结构。我们通过计算密度场(径向分布函数)和速度场(粒子之间的相对速度和相对径向速度)的指标来评估模型保真度。尽管仅在空间场上进行训练,但该模型以通常<10%的错误预测这些统计量。我们的结果表明,鉴于适当扩展的训练数据,深度学习可以补充直接数值模拟,以预测湍流中的粒子聚类。

We investigate the utility of deep learning for modeling the clustering of particles that are aerodynamically coupled to turbulent fluids. Using a Lagrangian particle module within the Athena++ hydrodynamics code, we simulate the dynamics of particles in the Epstein drag regime within a periodic domain of isotropic forced hydrodynamic turbulence. This setup is an idealized model relevant to the collisional growth of micron to mm-sized dust particles in early stage planet formation. The simulation data are used to train a U-Net deep learning model to predict gridded three-dimensional representations of the particle density and velocity fields, given as input the corresponding fluid fields. The trained model qualitatively captures the filamentary structure of clustered particles in a highly non-linear regime. We assess model fidelity by calculating metrics of the density field (the radial distribution function) and of the velocity field (the relative velocity and the relative radial velocity between particles). Although trained only on the spatial fields, the model predicts these statistical quantities with errors that are typically <10%. Our results suggest that, given appropriately expanded training data, deep learning could complement direct numerical simulations in predicting particle clustering within turbulent flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源