论文标题
在目标数据中毒下的最佳学习
On Optimal Learning Under Targeted Data Poisoning
论文作者
论文摘要
考虑在有对手的情况下学习假设类$ \ MATHCAL {H} $的任务,该对手可以在训练集中使用任意对抗性示例来替换最多$η$分数。对手的目的是使学习者在特定目标测试点$ x $上失败,这是对手已知的,但对学习者不知道。在这项工作中,我们旨在表征学习者在可实现的和不可知的设置中存在这样的对手的情况下,学习者的最小可达到的错误$ε=ε(η)$。我们在可实现的设置中充分实现了这一目标,证明$ε=θ(\ Mathtt {vc}(\ Mathcal {h})\ cdotη)$,其中$ \ Mathtt {vc}(\ Mathcal {h})$是$ \ Mathcal {H Mathcal {H} $的VC dimension。值得注意的是,我们表明,确定性学习者可以实现上限。 In the agnostic setting we reveal a more elaborate landscape: we devise a deterministic learner with a multiplicative regret guarantee of $ε\leq C\cdot\mathtt{OPT} + O(\mathtt{VC}(\mathcal{H})\cdot η)$, where $C > 1$ is a universal numerical constant.我们通过证明任何确定性学习者的攻击使它的错误使其至少$ 2 \ cdot \ mathtt {opt} $使其恶化。这意味着在这种情况下,遗憾的乘法恶化是不可避免的。最后,我们为实现最佳速率而开发的算法本质上是不正确的。然而,我们表明,对于各种自然概念类,例如线性分类器,可以通过适当的设置中的适当算法保留依赖性$ε=θ_ {\ Mathcal {h}}(η)$。这里$θ_ {\ mathcal {h}} $隐藏了对$ \ m athtt {vc}(\ Mathcal {h})$的多项式依赖。
Consider the task of learning a hypothesis class $\mathcal{H}$ in the presence of an adversary that can replace up to an $η$ fraction of the examples in the training set with arbitrary adversarial examples. The adversary aims to fail the learner on a particular target test point $x$ which is known to the adversary but not to the learner. In this work we aim to characterize the smallest achievable error $ε=ε(η)$ by the learner in the presence of such an adversary in both realizable and agnostic settings. We fully achieve this in the realizable setting, proving that $ε=Θ(\mathtt{VC}(\mathcal{H})\cdot η)$, where $\mathtt{VC}(\mathcal{H})$ is the VC dimension of $\mathcal{H}$. Remarkably, we show that the upper bound can be attained by a deterministic learner. In the agnostic setting we reveal a more elaborate landscape: we devise a deterministic learner with a multiplicative regret guarantee of $ε\leq C\cdot\mathtt{OPT} + O(\mathtt{VC}(\mathcal{H})\cdot η)$, where $C > 1$ is a universal numerical constant. We complement this by showing that for any deterministic learner there is an attack which worsens its error to at least $2\cdot \mathtt{OPT}$. This implies that a multiplicative deterioration in the regret is unavoidable in this case. Finally, the algorithms we develop for achieving the optimal rates are inherently improper. Nevertheless, we show that for a variety of natural concept classes, such as linear classifiers, it is possible to retain the dependence $ε=Θ_{\mathcal{H}}(η)$ by a proper algorithm in the realizable setting. Here $Θ_{\mathcal{H}}$ conceals a polynomial dependence on $\mathtt{VC}(\mathcal{H})$.