论文标题
GL(n,c)表示的特征因素
Character factorizations for representations of GL(n,C)
论文作者
论文摘要
本文的目的是给出d.prasad定理的另一个证明,该定理计算出$ \ text {gl}(mn,\ mathbb {c})$的不可约定表示的特征, $ \下列{ $ω_n= e^{\ frac {2π\ imath} {n}} $,并将其表示为$ \ text {gl}(m,m,\ mathbb {c})$ at $ \ usevenline {t}^n $的某些字符的产物。
The aim of this paper is to give another proof of a theorem of D.Prasad, which calculates the character of an irreducible representation of $\text{GL}(mn,\mathbb{C})$ at the diagonal elements of the form $\underline{t} \cdot c_n$, where $\underline{t}=(t_1,t_2,\cdots,t_m)$ $\in$ $(\mathbb{C}^*)^{m}$ and $c_n=(1,ω_n,ω_n^{2},\cdots,ω_n^{n-1})$, where $ω_n=e^{\frac{2π\imath}{n}}$, and expresses it as a product of certain characters for $\text{GL}(m,\mathbb{C})$ at $\underline{t}^n$.