论文标题
人工智能和空间中的自然语言处理和理解:方法论框架和四个ESA案例研究
Artificial Intelligence and Natural Language Processing and Understanding in Space: A Methodological Framework and Four ESA Case Studies
论文作者
论文摘要
欧洲航天局在与太空相关的许多领域中众所周知,是科学发现的强大力量。在ESA执行的不同任务中产生的知识的数量和深度及其对科学进步的贡献是巨大的,涉及大量文档,例如科学出版物,可行性研究,技术报告和质量管理程序等。通过诸如开放空间创新平台之类的举措,ESA还充当了来自更广泛社区的新想法的枢纽,涉及各种挑战,这为科学发现和创新的良好圈子做出了贡献。处理如此丰富的信息,其中很大一部分是非结构化的文本,是一项巨大的任务,超越了人类能力,因此需要自动化。在本文中,我们提出了一个基于人工智能和自然语言处理和理解的方法学框架,以自动从太空文档中提取信息,从中产生价值,并通过在ESA的不同功能领域实施的几个案例研究来说明此类框架,包括任务设计,质量保证,长期数据保存以及开放空间创新平台。在此过程中,我们在几个任务中演示了这些技术的价值,从毫不费力地搜索和推荐空间信息到自动确定一个想法的创新性,回答有关空间的问题,并就质量过程产生测验。这些成就中的每一个都代表着在空间中越来越智能的AI系统应用的一步,从构建和促进信息访问能够通过此类信息来理解和推理的智能系统的信息访问。
The European Space Agency is well known as a powerful force for scientific discovery in numerous areas related to Space. The amount and depth of the knowledge produced throughout the different missions carried out by ESA and their contribution to scientific progress is enormous, involving large collections of documents like scientific publications, feasibility studies, technical reports, and quality management procedures, among many others. Through initiatives like the Open Space Innovation Platform, ESA also acts as a hub for new ideas coming from the wider community across different challenges, contributing to a virtuous circle of scientific discovery and innovation. Handling such wealth of information, of which large part is unstructured text, is a colossal task that goes beyond human capabilities, hence requiring automation. In this paper, we present a methodological framework based on artificial intelligence and natural language processing and understanding to automatically extract information from Space documents, generating value from it, and illustrate such framework through several case studies implemented across different functional areas of ESA, including Mission Design, Quality Assurance, Long-Term Data Preservation, and the Open Space Innovation Platform. In doing so, we demonstrate the value of these technologies in several tasks ranging from effortlessly searching and recommending Space information to automatically determining how innovative an idea can be, answering questions about Space, and generating quizzes regarding quality procedures. Each of these accomplishments represents a step forward in the application of increasingly intelligent AI systems in Space, from structuring and facilitating information access to intelligent systems capable to understand and reason with such information.