论文标题
部分可观测时空混沌系统的无模型预测
Linear Inverse Problems with Hessian-Schatten Total Variation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this paper, we characterize the class of extremal points of the unit ball of the Hessian-Schatten total variation (HTV) functional. The underlying motivation for our work stems from a general representer theorem that characterizes the solution set of regularized linear inverse problems in terms of the extremal points of the regularization ball. Our analysis is mainly based on studying the class of continuous and piecewise linear (CPWL) functions. In particular, we show that in dimension $d=2$, CPWL functions are dense in the unit ball of the HTV functional. Moreover, we prove that a CPWL function is extremal if and only if its Hessian is minimally supported. For the converse, we prove that the density result (which we have only proven for dimension $d = 2$) implies that the closure of the CPWL extreme points contains all extremal points.