论文标题

部分可观测时空混沌系统的无模型预测

Delivery to Safety with Two Cooperating Robots

论文作者

Coleman, Jared, Kranakis, Evangelos, Krizanc, Danny, Morales-Ponce, Oscar

论文摘要

将两个具有任意非零最大速度的自动移动机器人放置在飞机中的任意初始位置。在某个来源位置发现了远程爆炸炸弹,必须尽快将其移至安全距离。在炸弹小队的问题中,机器人通过面对面进行交流以从源头捡起炸弹,并将其带到最短的时间以源为中心的磁盘的边界。目的是指定轨迹,这些轨迹从开始到终点定义了机器人的路径,以及他们的聚会点,从而通过交换信息并将炸弹从机器人传递到机器人来使面对面的协作。 我们设计了反映机器人对方向以及彼此速度和位置的知识的算法。在离线情况下,我们设计了一种最佳算法。对于有限的知识案例,我们提供了在线算法,这些算法考虑机器人根据Oneaxis和Noaxis模型的方向达成一致性,以及对边界的知识,可见,可发现和看不见。在所有情况下,我们为在线问题的竞争比率提供上限和下限。

Two cooperating, autonomous mobile robots with arbitrary nonzero max speeds are placed at arbitrary initial positions in the plane. A remotely detonated bomb is discovered at some source location and must be moved to a safe distance away from its initial location as quickly as possible. In the Bomb Squad problem, the robots cooperate by communicating face-to-face in order to pick up the bomb from the source and carry it away to the boundary of a disk centered at the source in the shortest possible time. The goal is to specify trajectories which define the robots' paths from start to finish and their meeting points which enable face-to-face collaboration by exchanging information and passing the bomb from robot to robot. We design algorithms reflecting the robots' knowledge about orientation and each other's speed and location. In the offline case, we design an optimal algorithm. For the limited knowledge cases, we provide online algorithms which consider robots' level of agreement on orientation as per OneAxis and NoAxis models, and knowledge of the boundary as per Visible, Discoverable, and Invisible. In all cases, we provide upper and lower bounds for the competitive ratios of the online problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源