论文标题
可开发的四边形网格和接触元件网
Developable Quad Meshes and Contact Element Nets
论文作者
论文摘要
可以通过消失的高斯曲率或存在等轴测映射到平面域来以不同的等效方式表示表面的特性。对该主题的计算贡献范围从特殊参数化到离散iSmetric映射。但是,到目前为止,缺乏表达普通Quad网格的可发展性的本地标准。在本文中,我们提出了一种新的,有效的离散性可发展性标准,该标准应用于配备有顶点权重的四边形网格,并以差异几何形状的众所周知的特征为动机,即缺乏等级的第二个基本形式。我们将接触元素分配给网格和统治向量的脸部的边缘,该边缘结合每张面产生可发展性条件。使用标准优化程序,我们能够执行交互式设计和可开发的倾斜。我们采用的网格是与孤立奇异性的组合常规四边形网,但否则不需要在可开发的表面上遵循任何特殊的曲线。因此,它们很容易嵌入设计工作流程中,涉及标准操作,例如重组,修剪和合并操作。一个重要的特征是,我们可以直接从网格中得出水密,有理双重的样条表面。值得注意的是,它是作为加权doo-sabin细分的极限,它以插值的方式对接触元素作用。
The property of a surface being developable can be expressed in different equivalent ways, by vanishing Gauss curvature, or by the existence of isometric mappings to planar domains. Computational contributions to this topic range from special parametrizations to discrete-isometric mappings. However, so far a local criterion expressing developability of general quad meshes has been lacking. In this paper, we propose a new and efficient discrete developability criterion that is applied to quad meshes equipped with vertex weights, and which is motivated by a well-known characterization in differential geometry, namely a rank-deficient second fundamental form. We assign contact elements to the faces of meshes and ruling vectors to the edges, which in combination yield a developability condition per face. Using standard optimization procedures, we are able to perform interactive design and developable lofting. The meshes we employ are combinatorial regular quad meshes with isolated singularities but are otherwise not required to follow any special curves on a developable surface. They are thus easily embedded into a design workflow involving standard operations like remeshing, trimming, and merging operations. An important feature is that we can directly derive a watertight, rational bi-quadratic spline surface from our meshes. Remarkably, it occurs as the limit of weighted Doo-Sabin subdivision, which acts in an interpolatory manner on contact elements.