论文标题
易耐故障Strassen样基质乘法
Fault-Tolerant Strassen-Like Matrix Multiplication
论文作者
论文摘要
在这项研究中,我们提出了一种简单的耐断层Strassen样基质乘法的方法。所提出的方法基于使用两种不同的Strassen样算法而不是复制给定的算法。我们已经意识到,使用两种不同的算法,新的检查关系会产生更多的本地计算。使用计算机辅助搜索找到这些本地计算。为了提高性能,生成了特殊的奇偶校验(额外)子矩阵乘法(PSMM)(其中两个)以增加系统的通信/计算成本为代价。我们的初步结果表明,所提出的方法的表现优于类似于Strassen的算法的两份副本,并仅使用2个PSMM的三个复制版本确保了非常接近的性能,从而将计算节点的总数减少了24 \%\%\%\%。
In this study, we propose a simple method for fault-tolerant Strassen-like matrix multiplications. The proposed method is based on using two distinct Strassen-like algorithms instead of replicating a given one. We have realized that using two different algorithms, new check relations arise resulting in more local computations. These local computations are found using computer aided search. To improve performance, special parity (extra) sub-matrix multiplications (PSMMs) are generated (two of them) at the expense of increasing communication/computation cost of the system. Our preliminary results demonstrate that the proposed method outperforms a Strassen-like algorithm with two copies and secures a very close performance to three copy version using only 2 PSMMs, reducing the total number of compute nodes by around 24\% i.e., from 21 to 16.