论文标题

HICO:超声视频模型预处理的分层对比度学习

HiCo: Hierarchical Contrastive Learning for Ultrasound Video Model Pretraining

论文作者

Zhang, Chunhui, Chen, Yixiong, Liu, Li, Liu, Qiong, Zhou, Xi

论文摘要

自我监督的超声(US)视频模型预处理可以使用少量标记的数据来实现美国诊断最有希望的结果之一。但是,它并没有充分利用学习深神经网络(DNN)的多层次知识,因此很难学习可转移的特征表示。这项工作提出了一种层次对比学习(HICO)方法,以提高美国视频模型预处理的可传递性。 HICO引入了同行级别的语义对准和跨级语义对齐,以促进不同语义水平之间的相互作用,这可以有效地加速收敛速度,从而使学习模型的更好地概括和适应。此外,通过平滑硬标签来实现软化目标函数,这可以减轻不同类别之间图像的局部相似性造成的负面影响。在五个数据集上使用HICO进行的实验证明了其比最新方法的好结果。这项工作的源代码可在https://github.com/983632847/hico上公开获得。

The self-supervised ultrasound (US) video model pretraining can use a small amount of labeled data to achieve one of the most promising results on US diagnosis. However, it does not take full advantage of multi-level knowledge for learning deep neural networks (DNNs), and thus is difficult to learn transferable feature representations. This work proposes a hierarchical contrastive learning (HiCo) method to improve the transferability for the US video model pretraining. HiCo introduces both peer-level semantic alignment and cross-level semantic alignment to facilitate the interaction between different semantic levels, which can effectively accelerate the convergence speed, leading to better generalization and adaptation of the learned model. Additionally, a softened objective function is implemented by smoothing the hard labels, which can alleviate the negative effect caused by local similarities of images between different classes. Experiments with HiCo on five datasets demonstrate its favorable results over state-of-the-art approaches. The source code of this work is publicly available at https://github.com/983632847/HiCo.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源