论文标题

学习“ o”有助于学习更多:处理班级入学的隐藏实体问题

Learning "O" Helps for Learning More: Handling the Concealed Entity Problem for Class-incremental NER

论文作者

Ma, Ruotian, Chen, Xuanting, Zhang, Lin, Zhou, Xin, Wang, Junzhe, Gui, Tao, Zhang, Qi, Gao, Xiang, Chen, Yunwen

论文摘要

随着命名实体的类别迅速增加,需要部署的NER模型继续进行更新,以识别更多实体类型,从而为NER提供对课堂学习的需求。考虑到隐私问题和存储限制,课堂开发的标准范式仅使用新类别注释的培训数据来更新模型,但是其他实体类的实体被未标记,被视为“非实体”(或“ O”)。在这项工作中,我们对“未标记的实体问题”进行了一项实证研究,发现它会导致“ O”与实体之间的严重混淆,减少对旧类别的阶级歧视并降低模型学习新阶级的能力。为了解决未标记的实体问题,我们提出了一种新颖的表示学习方法,以学习实体类别和“ O”的判别表示。具体而言,我们提出了一种实体感知的对比学习方法,该方法可适应“ O”中的实体集群。此外,我们提出了两种有效的基于距离的重新标签策略,以更好地学习旧课程。我们为课堂开展NER引入了更现实和具有挑战性的基准,并且所提出的方法比基线方法提高了10.62 \%的改进。

As the categories of named entities rapidly increase, the deployed NER models are required to keep updating toward recognizing more entity types, creating a demand for class-incremental learning for NER. Considering the privacy concerns and storage constraints, the standard paradigm for class-incremental NER updates the models with training data only annotated with the new classes, yet the entities from other entity classes are unlabeled, regarded as "Non-entity" (or "O"). In this work, we conduct an empirical study on the "Unlabeled Entity Problem" and find that it leads to severe confusion between "O" and entities, decreasing class discrimination of old classes and declining the model's ability to learn new classes. To solve the Unlabeled Entity Problem, we propose a novel representation learning method to learn discriminative representations for the entity classes and "O". Specifically, we propose an entity-aware contrastive learning method that adaptively detects entity clusters in "O". Furthermore, we propose two effective distance-based relabeling strategies for better learning the old classes. We introduce a more realistic and challenging benchmark for class-incremental NER, and the proposed method achieves up to 10.62\% improvement over the baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源