论文标题

频率感知的自我监管的单眼深度估计

Frequency-Aware Self-Supervised Monocular Depth Estimation

论文作者

Chen, Xingyu, Li, Thomas H., Zhang, Ruonan, Li, Ge

论文摘要

我们提出了两种多功能方法,通常可以增强自我监督的单眼估计(MDE)模型。通过解决光度损耗函数中的基本问题和无处不在的问题,可以实现我们方法的高概括性。特别是,从空间频率的角度来看,我们首先提出歧义性掩盖,以抑制在特定物体边界下光度损失下的错误监督,其原因可以追溯到像素级别的歧义。其次,我们提出了一种新型的频率自适应高斯低通滤波器,旨在稳健地在高频区域中的光度损失。我们是第一个提出模糊图像以通过可解释的分析来改善深度估计器的人。这两个模块都是轻巧的,没有添加参数,也无需手动更改网络结构。实验表明,我们的方法为大量现有模型提供了绩效的提高,包括那些声称是最先进的模型,同时根本不引入额外的推理计算。

We present two versatile methods to generally enhance self-supervised monocular depth estimation (MDE) models. The high generalizability of our methods is achieved by solving the fundamental and ubiquitous problems in photometric loss function. In particular, from the perspective of spatial frequency, we first propose Ambiguity-Masking to suppress the incorrect supervision under photometric loss at specific object boundaries, the cause of which could be traced to pixel-level ambiguity. Second, we present a novel frequency-adaptive Gaussian low-pass filter, designed to robustify the photometric loss in high-frequency regions. We are the first to propose blurring images to improve depth estimators with an interpretable analysis. Both modules are lightweight, adding no parameters and no need to manually change the network structures. Experiments show that our methods provide performance boosts to a large number of existing models, including those who claimed state-of-the-art, while introducing no extra inference computation at all.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源