论文标题

使用生成模型和乳房X线扫描中的总和网络进行异常检测

Anomaly Detection using Generative Models and Sum-Product Networks in Mammography Scans

论文作者

Dietrichstein, Marc, Major, David, Trapp, Martin, Wimmer, Maria, Lenis, Dimitrios, Winter, Philip, Berg, Astrid, Neubauer, Theresa, Bühler, Katja

论文摘要

仅由健康数据培训的无监督的异常检测模型在近年来已经变得很重要,因为医疗数据的注释是一项繁琐的任务。自动编码器和生成对抗网络是用于学习数据分布的标准异常检测方法。但是,在推断和评估测试样品的可能性方面,它们缺乏。我们提出了生成模型和概率图形模型的新型组合。通过自动编码器编码图像样品后,数据的分布由随机和张力的总和网络建模,以确保在测试时确切有效的推断。我们使用贴片处理评估了不同的自动编码器体系结构,并在乳房X线摄影图像上结合了随机和张力的总结网络,并观察出优于使用模型的独立模型和最先进的医疗检测模型。

Unsupervised anomaly detection models which are trained solely by healthy data, have gained importance in the recent years, as the annotation of medical data is a tedious task. Autoencoders and generative adversarial networks are the standard anomaly detection methods that are utilized to learn the data distribution. However, they fall short when it comes to inference and evaluation of the likelihood of test samples. We propose a novel combination of generative models and a probabilistic graphical model. After encoding image samples by autoencoders, the distribution of data is modeled by Random and Tensorized Sum-Product Networks ensuring exact and efficient inference at test time. We evaluate different autoencoder architectures in combination with Random and Tensorized Sum-Product Networks on mammography images using patch-wise processing and observe superior performance over utilizing the models standalone and state-of-the-art in anomaly detection for medical data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源