论文标题

完美的匹配切割将图表分配到互补子图中

Perfect matching cuts partitioning a graph into complementary subgraphs

论文作者

Castonguay, Diane, Coelho, Erika M. M., Coelho, Hebert, Nascimento, Julliano R., Souza, Uéverton S.

论文摘要

为了分配为补充子图(comp-sub),我们获得了一个图$ g =(v,e)$和一个边缘设置属性$π$,并询问是否可以将$ g $分解为两个图,$ h $及其补充$ \ overline {h yline {h} $,以某种方式$ h $,以某种方式,以使得$ h $,以使$ cut $ cut $ cut $ cut $ [v(v v(v v(h),v(h),v(h),v(h),v(h),v(h), $π$。在先前的工作中,我们考虑comp-sub($π$)当属性$π= \ nathcal {pm} $指定分解的边缘切割是完美的匹配时。我们证明,当Graph $ G $为$ \ {C_ {K \ GEQ 7},\ OVERLINE {C} _ {K \ geq 7} \ efree时,Comp-Sub($ \ MATHCAL {PM} $)是GI-HARD。另一方面,我们表明Comp-Sub($ \ Mathcal {pm} $)在$ hole $ - Free Graphs和$ p_5 $ - Free Graphs上是多项式时间的求解。此外,我们介绍了conder,远程遗传和扩展的$ p_4 $ -laden图的Comp-Sub($ \ Mathcal {pm} $)的特征。

In Partition Into Complementary Subgraphs (Comp-Sub) we are given a graph $G=(V,E)$, and an edge set property $Π$, and asked whether $G$ can be decomposed into two graphs, $H$ and its complement $\overline{H}$, for some graph $H$, in such a way that the edge cut $[V(H),V(\overline{H})]$ satisfies the property $Π$. Motivated by previous work, we consider Comp-Sub($Π$) when the property $Π=\mathcal{PM}$ specifies that the edge cut of the decomposition is a perfect matching. We prove that Comp-Sub($\mathcal{PM}$) is GI-hard when the graph $G$ is $\{C_{k\geq 7}, \overline{C}_{k\geq 7} \}$-free. On the other hand, we show that Comp-Sub($\mathcal{PM}$) is polynomial-time solvable on $hole$-free graphs and on $P_5$-free graphs. Furthermore, we present characterizations of Comp-Sub($\mathcal{PM}$) on chordal, distance-hereditary, and extended $P_4$-laden graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源