论文标题
经典模型出现在量子纠缠中:iSing-Heisenberg bilayer的量子蒙特卡洛研究
Classical model emerges in quantum entanglement: Quantum Monte Carlo study for an Ising-Heisenberg bilayer
论文作者
论文摘要
通过开发随机系列扩展量子蒙特卡洛方法的簇采样,我们研究了带有层内层铁磁(FM)ISING ISING耦合和层间抗抗铁磁性Heisenetic Heisenberg Heisenberg相互作用的双层方晶格的旋转$ 1/2 $模型。 FM ISING相位和二聚相之间的连续量子相变发生在$ G_C = 3.045(2)$之间。从关键指数的分析中,我们表明该相变属于(2+1)二维伊辛普遍性类别。此外,两层之间的量子纠缠很强,尤其是在二聚相中。单层有效的哈密顿量似乎是横向场模型。但是,我们发现量子纠缠哈密顿量是一个纯粹的古典伊斯林模型,而没有任何量子波动。此外,我们对哈密顿式纠缠如何出现,给出了更一般的解释。
By developing a cluster sampling of stochastic series expansion quantum Monte Carlo method, we investigate a spin-$1/2$ model on a bilayer square lattice with intra-layer ferromagnetic (FM) Ising coupling and inter-layer antiferromagnetic Heisenberg interaction. The continuous quantum phase transition which occurs at $g_c=3.045(2)$ between the FM Ising phase and the dimerized phase is studied via large scale simulations. From the analyzes of critical exponents we show that this phase transition belongs to the (2+1)-dimensional Ising universality class. Besides, the quantum entanglement is strong between the two layers, especially in dimerized phase. The effective Hamiltonian of single layer seems like a transverse field Ising model. However, we found the quantum entanglement Hamiltonian is a pure classical Ising model without any quantum fluctuations. Furthermore, we give a more general explanation about how a classical entanglement Hamiltonian emerges.