论文标题
零件尺度添加剂制造过程的稀疏网格不确定性量化
Sparse-grids uncertainty quantification of part-scale additive manufacturing processes
论文作者
论文摘要
本文旨在应用不确定性定量方法来处理金属粉末床融合的模拟。特别是,对于Inconel 625超级合金束的零件尺度热力学模型,我们研究了三个过程参数的不确定性,即激活温度,粉末对流系数和气体对流系数。首先,我们执行基于方差的全局灵敏度分析,以研究每个不确定参数如何促进光束位移的变异性。结果使我们得出结论,气体对流系数的影响很小,因此可以将其固定在随后的研究中的恒定价值。然后,我们基于贝叶斯的合成位移数据的方法进行反向不确定性量化分析,以量化两个剩余参数的不确定性,即激活温度和粉末对流系数。最后,我们使用逆不确定性量化分析的结果来对残余菌株进行数据信息的前进不确定性量化分析。至关重要的是,我们利用基于稀疏网格的替代模型,以使不确定性量化分析的每一步的计算负担最小。提出的不确定性定量工作流程使我们能够大大减轻用于校准动力床融合零件尺度模型的典型试验和错误方法,并大大减少对残留菌株的数值预测的不确定性。特别是,我们证明了使用位移测量值获得数据信息的概率密度函数的可能性,这比位移要比位移要复杂得多。
The present paper aims at applying uncertainty quantification methodologies to process simulations of powder bed fusion of metal. In particular, for a part-scale thermomechanical model of an Inconel 625 super-alloy beam, we study the uncertainties of three process parameters, namely the activation temperature, the powder convection coefficient and the gas convection coefficient. First, we perform a variance-based global sensitivity analysis to study how each uncertain parameter contributes to the variability of the beam displacements. The results allow us to conclude that the gas convection coefficient has little impact and can therefore be fixed to a constant value for subsequent studies. Then, we conduct an inverse uncertainty quantification analysis, based on a Bayesian approach on synthetic displacements data, to quantify the uncertainties of the two remaining parameters, namely the activation temperature and the powder convection coefficient. Finally, we use the results of the inverse uncertainty quantification analysis to perform a data-informed forward uncertainty quantification analysis of the residual strains. Crucially, we make use of surrogate models based on sparse grids to keep to a minimum the computational burden of every step of the uncertainty quantification analysis. The proposed uncertainty quantification workflow allows us to substantially ease the typical trial-and-error approach used to calibrate power bed fusion part-scale models, and to greatly reduce uncertainties on the numerical prediction of the residual strains. In particular, we demonstrate the possibility of using displacement measurements to obtain a data-informed probability density function of the residual strains, a quantity much more complex to measure than displacements.